4 * Freeglut geometry rendering methods.
6 * Copyright (c) 1999-2000 Pawel W. Olszta. All Rights Reserved.
7 * Written by Pawel W. Olszta, <olszta@sourceforge.net>
8 * Creation date: Fri Dec 3 1999
10 * Permission is hereby granted, free of charge, to any person obtaining a
11 * copy of this software and associated documentation files (the "Software"),
12 * to deal in the Software without restriction, including without limitation
13 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
14 * and/or sell copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included
18 * in all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PAWEL W. OLSZTA BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
24 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
25 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
32 #define G_LOG_DOMAIN "freeglut-geometry"
34 #include "../include/GL/freeglut.h"
35 #include "freeglut_internal.h"
38 * TODO BEFORE THE STABLE RELEASE:
40 * Following functions have been contributed by Andreas Umbach.
42 * glutWireCube() -- looks OK
43 * glutSolidCube() -- OK
44 * glutWireSphere() -- OK
45 * glutSolidSphere() -- OK
47 * Following functions have been implemented by Pawel and modified by John Fay:
49 * glutWireCone() -- looks OK
50 * glutSolidCone() -- looks OK
52 * Those functions have been implemented by John Fay.
54 * glutWireTorus() -- looks OK
55 * glutSolidTorus() -- looks OK
56 * glutWireDodecahedron() -- looks OK
57 * glutSolidDodecahedron() -- looks OK
58 * glutWireOctahedron() -- looks OK
59 * glutSolidOctahedron() -- looks OK
60 * glutWireTetrahedron() -- looks OK
61 * glutSolidTetrahedron() -- looks OK
62 * glutWireIcosahedron() -- looks OK
63 * glutSolidIcosahedron() -- looks OK
67 /* -- INTERFACE FUNCTIONS -------------------------------------------------- */
70 * Draws a wireframed cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
72 void FGAPIENTRY glutWireCube( GLdouble dSize )
74 double size = dSize * 0.5;
76 # define V(a,b,c) glVertex3d( a size, b size, c size );
77 # define N(a,b,c) glNormal3d( a, b, c );
80 * PWO: I dared to convert the code to use macros...
82 glBegin( GL_LINE_LOOP ); N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); glEnd();
83 glBegin( GL_LINE_LOOP ); N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); glEnd();
84 glBegin( GL_LINE_LOOP ); N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); glEnd();
85 glBegin( GL_LINE_LOOP ); N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); glEnd();
86 glBegin( GL_LINE_LOOP ); N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); glEnd();
87 glBegin( GL_LINE_LOOP ); N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); glEnd();
94 * Draws a solid cube. Code contributed by Andreas Umbach <marvin@dataway.ch>
96 void FGAPIENTRY glutSolidCube( GLdouble dSize )
98 double size = dSize * 0.5;
100 # define V(a,b,c) glVertex3d( a size, b size, c size );
101 # define N(a,b,c) glNormal3d( a, b, c );
104 * PWO: Again, I dared to convert the code to use macros...
107 N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+);
108 N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+);
109 N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+);
110 N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-);
111 N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+);
112 N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-);
120 * Draws a wire sphere. Code contributed by Andreas Umbach <marvin@dataway.ch>
122 void FGAPIENTRY glutWireSphere( GLdouble dRadius, GLint slices, GLint stacks )
124 double radius = dRadius, phi, psi, dpsi, dphi;
127 double cphi, sphi, cpsi, spsi ;
130 * Allocate the vertices array
132 vertex = calloc( sizeof(double), 3 * slices * (stacks - 1) );
135 glScaled( radius, radius, radius );
137 dpsi = M_PI / (stacks + 1);
138 dphi = 2 * M_PI / slices;
141 for( j=0; j<stacks-1; j++ )
147 for( i=0; i<slices; i++ )
149 int offset = 3 * ( j * slices + i ) ;
152 *(vertex + offset + 0) = sphi * spsi ;
153 *(vertex + offset + 1) = cphi * spsi ;
154 *(vertex + offset + 2) = cpsi ;
161 for( i=0; i<slices; i++ )
163 glBegin( GL_LINE_STRIP );
164 glNormal3d( 0, 0, 1 );
165 glVertex3d( 0, 0, 1 );
167 for( j=0; j<stacks - 1; j++ )
169 int offset = 3 * ( j * slices + i ) ;
170 glNormal3dv( vertex + offset );
171 glVertex3dv( vertex + offset );
174 glNormal3d(0, 0, -1);
175 glVertex3d(0, 0, -1);
179 for( j=0; j<stacks-1; j++ )
181 glBegin(GL_LINE_LOOP);
183 for( i=0; i<slices; i++ )
185 int offset = 3 * ( j * slices + i ) ;
186 glNormal3dv( vertex + offset );
187 glVertex3dv( vertex + offset );
198 * Draws a solid sphere. Code contributed by Andreas Umbach <marvin@dataway.ch>
200 void FGAPIENTRY glutSolidSphere( GLdouble dRadius, GLint slices, GLint stacks )
202 double radius = dRadius, phi, psi, dpsi, dphi;
203 double *next, *tmp, *row;
205 double cphi, sphi, cpsi, spsi ;
208 /* glScalef( radius, radius, radius ); */
210 row = calloc( sizeof(double), slices * 3 );
211 next = calloc( sizeof(double), slices * 3 );
213 dpsi = M_PI / (stacks + 1);
214 dphi = 2 * M_PI / slices;
218 /* init first line + do polar cap */
219 glBegin( GL_TRIANGLE_FAN );
220 glNormal3d( 0.0, 0.0, 1.0 );
221 glVertex3d( 0.0, 0.0, radius );
223 for( i=0; i<slices; i++ )
225 row[ i * 3 + 0 ] = sin( phi ) * sin( psi );
226 row[ i * 3 + 1 ] = cos( phi ) * sin( psi );
227 row[ i * 3 + 2 ] = cos( psi );
229 glNormal3dv( row + 3 * i );
231 radius * *(row + 3 * i + 0),
232 radius * *(row + 3 * i + 1),
233 radius * *(row + 3 * i + 2)
240 glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
243 for( j=0; j<stacks-1; j++ )
251 glBegin( GL_QUAD_STRIP );
253 /* glBegin(GL_LINE_LOOP); */
254 for( i=0; i<slices; i++ )
258 next[ i * 3 + 0 ] = sphi * spsi ;
259 next[ i * 3 + 1 ] = cphi * spsi ;
260 next[ i * 3 + 2 ] = cpsi ;
262 glNormal3dv( row + i * 3 );
264 radius * *(row + 3 * i + 0),
265 radius * *(row + 3 * i + 1),
266 radius * *(row + 3 * i + 2)
269 glNormal3dv( next + i * 3 );
271 radius * *(next + 3 * i + 0),
272 radius * *(next + 3 * i + 1),
273 radius * *(next + 3 * i + 2)
280 glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
282 glVertex3d( radius * *(next + 0), radius * *(next + 1), radius * *(next + 2) );
291 glBegin( GL_TRIANGLE_FAN );
292 glNormal3d( 0.0, 0.0, -1.0 );
293 glVertex3d( 0.0, 0.0, -radius );
295 glVertex3d( radius * *(row + 0), radius * *(row + 1), radius * *(row + 2) );
297 for( i=slices-1; i>=0; i-- )
299 glNormal3dv(row + 3 * i);
301 radius * *(row + 3 * i + 0),
302 radius * *(row + 3 * i + 1),
303 radius * *(row + 3 * i + 2)
317 void FGAPIENTRY glutWireCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
319 double alt = height / (double) (stacks + 1);
320 double angle = M_PI / (double) slices * 2.0;
321 double slope = ( height / base );
322 double sBase = base ;
323 double sinNormal = ( base / sqrt ( height * height + base * base )) ;
324 double cosNormal = ( height / sqrt ( height * height + base * base )) ;
326 double *vertices = NULL;
330 * We need 'slices' points on a circle
332 vertices = calloc( sizeof(double), 2 * (slices + 1) );
334 for( j=0; j<slices+1; j++ )
336 vertices[ j*2 + 0 ] = cos( angle * j );
337 vertices[ j*2 + 1 ] = sin( angle * j );
341 * First the cone's bottom...
343 for( j=0; j<slices; j++ )
345 glBegin( GL_LINE_LOOP );
346 glNormal3d( 0.0, 0.0, -1.0 );
347 glVertex3d( vertices[ (j+0)*2+0 ] * sBase, vertices[ (j+0)*2+1 ] * sBase, 0 );
348 glVertex3d( vertices[ (j+1)*2+0 ] * sBase, vertices[ (j+1)*2+1 ] * sBase, 0 );
349 glVertex3d( 0.0, 0.0, 0.0 );
354 * Then all the stacks between the bottom and the top
356 for( i=0; i<stacks; i++ )
358 double alt_a = i * alt, alt_b = (i + 1) * alt;
359 double scl_a = (height - alt_a) / slope;
360 double scl_b = (height - alt_b) / slope;
362 for( j=0; j<slices; j++ )
364 glBegin( GL_LINE_LOOP );
365 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
366 glVertex3d( vertices[(j+0)*2+0] * scl_a, vertices[(j+0)*2+1] * scl_a, alt_a );
367 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
368 glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
369 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
370 glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
373 glBegin( GL_LINE_LOOP );
374 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
375 glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
376 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
377 glVertex3d( vertices[(j+1)*2+0] * scl_b, vertices[(j+1)*2+1] * scl_b, alt_b );
378 glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
384 * Finally have the top part drawn...
386 for( j=0; j<slices; j++ )
388 double scl = alt / slope;
390 glBegin( GL_LINE_LOOP );
391 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
392 glVertex3d( vertices[ (j+0)*2+0 ] * scl, vertices[ (j+0)*2+1 ] * scl, height - alt );
393 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
394 glVertex3d( vertices[ (j+1)*2+0 ] * scl, vertices[ (j+1)*2+1 ] * scl, height - alt );
395 glVertex3d( 0, 0, height );
403 void FGAPIENTRY glutSolidCone( GLdouble base, GLdouble height, GLint slices, GLint stacks )
405 double alt = height / (double) (stacks + 1);
406 double angle = M_PI / (double) slices * 2.0f;
407 double slope = ( height / base );
408 double sBase = base ;
409 double sinNormal = ( base / sqrt ( height * height + base * base )) ;
410 double cosNormal = ( height / sqrt ( height * height + base * base )) ;
412 double *vertices = NULL;
416 * We need 'slices' points on a circle
418 vertices = calloc( sizeof(double), 2 * (slices + 1) );
420 for( j=0; j<slices+1; j++ )
422 vertices[ j*2 + 0 ] = cos( angle * j );
423 vertices[ j*2 + 1 ] = sin( angle * j );
427 * First the cone's bottom...
429 for( j=0; j<slices; j++ )
431 double scl = height / slope;
433 glBegin( GL_TRIANGLES );
434 glNormal3d( 0.0, 0.0, -1.0 );
435 glVertex3d( vertices[ (j+0)*2+0 ] * sBase, vertices[ (j+0)*2+1 ] * sBase, 0 );
436 glVertex3d( vertices[ (j+1)*2+0 ] * sBase, vertices[ (j+1)*2+1 ] * sBase, 0 );
437 glVertex3d( 0.0, 0.0, 0.0 );
442 * Then all the stacks between the bottom and the top
444 for( i=0; i<stacks; i++ )
446 double alt_a = i * alt, alt_b = (i + 1) * alt;
447 double scl_a = (height - alt_a) / slope;
448 double scl_b = (height - alt_b) / slope;
450 for( j=0; j<slices; j++ )
452 glBegin( GL_TRIANGLES );
453 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
454 glVertex3d( vertices[(j+0)*2+0] * scl_a, vertices[(j+0)*2+1] * scl_a, alt_a );
455 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
456 glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
457 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
458 glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
461 glBegin( GL_TRIANGLES );
462 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
463 glVertex3d( vertices[(j+0)*2+0] * scl_b, vertices[(j+0)*2+1] * scl_b, alt_b );
464 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
465 glVertex3d( vertices[(j+1)*2+0] * scl_b, vertices[(j+1)*2+1] * scl_b, alt_b );
466 glVertex3d( vertices[(j+1)*2+0] * scl_a, vertices[(j+1)*2+1] * scl_a, alt_a );
472 * Finally have the top part drawn...
474 for( j=0; j<slices; j++ )
476 double scl = alt / slope;
478 glBegin( GL_TRIANGLES );
479 glNormal3d( sinNormal * vertices[(j+0)*2+0], sinNormal * vertices[(j+0)*2+1], cosNormal ) ;
480 glVertex3d( vertices[ (j+0)*2+0 ] * scl, vertices[ (j+0)*2+1 ] * scl, height - alt );
481 glNormal3d( sinNormal * vertices[(j+1)*2+0], sinNormal * vertices[(j+1)*2+1], cosNormal ) ;
482 glVertex3d( vertices[ (j+1)*2+0 ] * scl, vertices[ (j+1)*2+1 ] * scl, height - alt );
483 glVertex3d( 0, 0, height );
491 void FGAPIENTRY glutWireTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
493 double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
494 double *vertex, *normal;
496 double spsi, cpsi, sphi, cphi ;
499 * Allocate the vertices array
501 vertex = calloc( sizeof(double), 3 * nSides * nRings );
502 normal = calloc( sizeof(double), 3 * nSides * nRings );
506 dpsi = 2.0 * M_PI / (double)nRings ;
507 dphi = 2.0 * M_PI / (double)nSides ;
510 for( j=0; j<nRings; j++ )
516 for( i=0; i<nSides; i++ )
518 int offset = 3 * ( j * nSides + i ) ;
521 *(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
522 *(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
523 *(vertex + offset + 2) = sphi * iradius ;
524 *(normal + offset + 0) = cpsi * cphi ;
525 *(normal + offset + 1) = spsi * cphi ;
526 *(normal + offset + 2) = sphi ;
533 for( i=0; i<nSides; i++ )
535 glBegin( GL_LINE_LOOP );
537 for( j=0; j<nRings; j++ )
539 int offset = 3 * ( j * nSides + i ) ;
540 glNormal3dv( normal + offset );
541 glVertex3dv( vertex + offset );
547 for( j=0; j<nRings; j++ )
549 glBegin(GL_LINE_LOOP);
551 for( i=0; i<nSides; i++ )
553 int offset = 3 * ( j * nSides + i ) ;
554 glNormal3dv( normal + offset );
555 glVertex3dv( vertex + offset );
569 void FGAPIENTRY glutSolidTorus( GLdouble dInnerRadius, GLdouble dOuterRadius, GLint nSides, GLint nRings )
571 double iradius = dInnerRadius, oradius = dOuterRadius, phi, psi, dpsi, dphi;
572 double *vertex, *normal;
574 double spsi, cpsi, sphi, cphi ;
577 * Increment the number of sides and rings to allow for one more point than surface
583 * Allocate the vertices array
585 vertex = calloc( sizeof(double), 3 * nSides * nRings );
586 normal = calloc( sizeof(double), 3 * nSides * nRings );
590 dpsi = 2.0 * M_PI / (double)(nRings - 1) ;
591 dphi = 2.0 * M_PI / (double)(nSides - 1) ;
594 for( j=0; j<nRings; j++ )
600 for( i=0; i<nSides; i++ )
602 int offset = 3 * ( j * nSides + i ) ;
605 *(vertex + offset + 0) = cpsi * ( oradius + cphi * iradius ) ;
606 *(vertex + offset + 1) = spsi * ( oradius + cphi * iradius ) ;
607 *(vertex + offset + 2) = sphi * iradius ;
608 *(normal + offset + 0) = cpsi * cphi ;
609 *(normal + offset + 1) = spsi * cphi ;
610 *(normal + offset + 2) = sphi ;
618 for( i=0; i<nSides-1; i++ )
620 for( j=0; j<nRings-1; j++ )
622 int offset = 3 * ( j * nSides + i ) ;
623 glNormal3dv( normal + offset );
624 glVertex3dv( vertex + offset );
625 glNormal3dv( normal + offset + 3 );
626 glVertex3dv( vertex + offset + 3 );
627 glNormal3dv( normal + offset + 3 * nSides + 3 );
628 glVertex3dv( vertex + offset + 3 * nSides + 3 );
629 glNormal3dv( normal + offset + 3 * nSides );
630 glVertex3dv( vertex + offset + 3 * nSides );
644 void FGAPIENTRY glutWireDodecahedron( void )
646 /* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
647 * of a cube. The coordinates of the points are:
648 * (+-x,0, z); (+-1, 1, 1); (0, z, x )
649 * where x = 0.61803398875 and z = 1.61803398875.
651 glBegin ( GL_LINE_LOOP ) ;
652 glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
654 glBegin ( GL_LINE_LOOP ) ;
655 glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
657 glBegin ( GL_LINE_LOOP ) ;
658 glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
660 glBegin ( GL_LINE_LOOP ) ;
661 glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
664 glBegin ( GL_LINE_LOOP ) ;
665 glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
667 glBegin ( GL_LINE_LOOP ) ;
668 glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
670 glBegin ( GL_LINE_LOOP ) ;
671 glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
673 glBegin ( GL_LINE_LOOP ) ;
674 glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
677 glBegin ( GL_LINE_LOOP ) ;
678 glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
680 glBegin ( GL_LINE_LOOP ) ;
681 glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
683 glBegin ( GL_LINE_LOOP ) ;
684 glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
686 glBegin ( GL_LINE_LOOP ) ;
687 glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
694 void FGAPIENTRY glutSolidDodecahedron( void )
696 /* Magic Numbers: It is possible to create a dodecahedron by attaching two pentagons to each face of
697 * of a cube. The coordinates of the points are:
698 * (+-x,0, z); (+-1, 1, 1); (0, z, x )
699 * where x = 0.61803398875 and z = 1.61803398875.
701 glBegin ( GL_POLYGON ) ;
702 glNormal3d ( 0.0, 0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
704 glBegin ( GL_POLYGON ) ;
705 glNormal3d ( 0.0, 0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
707 glBegin ( GL_POLYGON ) ;
708 glNormal3d ( 0.0, -0.525731112119, 0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
710 glBegin ( GL_POLYGON ) ;
711 glNormal3d ( 0.0, -0.525731112119, -0.850650808354 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
714 glBegin ( GL_POLYGON ) ;
715 glNormal3d ( 0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
717 glBegin ( GL_POLYGON ) ;
718 glNormal3d ( -0.850650808354, 0.0, 0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, 1.61803398875 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
720 glBegin ( GL_POLYGON ) ;
721 glNormal3d ( 0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( 0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
723 glBegin ( GL_POLYGON ) ;
724 glNormal3d ( -0.850650808354, 0.0, -0.525731112119 ) ; glVertex3d ( -0.61803398875, 0.0, -1.61803398875 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
727 glBegin ( GL_POLYGON ) ;
728 glNormal3d ( 0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( 1.0, 1.0, -1.0 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 1.0, 1.0, 1.0 ) ;
730 glBegin ( GL_POLYGON ) ;
731 glNormal3d ( 0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( 1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( 1.0, -1.0, 1.0 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 1.0, -1.0, -1.0 ) ;
733 glBegin ( GL_POLYGON ) ;
734 glNormal3d ( -0.525731112119, 0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, 0.61803398875, 0.0 ) ; glVertex3d ( -1.0, 1.0, 1.0 ) ; glVertex3d ( 0.0, 1.61803398875, 0.61803398875 ) ; glVertex3d ( 0.0, 1.61803398875, -0.61803398875 ) ; glVertex3d ( -1.0, 1.0, -1.0 ) ;
736 glBegin ( GL_POLYGON ) ;
737 glNormal3d ( -0.525731112119, -0.850650808354, 0.0 ) ; glVertex3d ( -1.61803398875, -0.61803398875, 0.0 ) ; glVertex3d ( -1.0, -1.0, -1.0 ) ; glVertex3d ( 0.0, -1.61803398875, -0.61803398875 ) ; glVertex3d ( 0.0, -1.61803398875, 0.61803398875 ) ; glVertex3d ( -1.0, -1.0, 1.0 ) ;
744 void FGAPIENTRY glutWireOctahedron( void )
747 glBegin( GL_LINE_LOOP );
748 glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
749 glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
750 glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
751 glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
752 glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
753 glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
754 glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
755 glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
763 void FGAPIENTRY glutSolidOctahedron( void )
766 glBegin( GL_TRIANGLES );
767 glNormal3d( 0.577350269189, 0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
768 glNormal3d( 0.577350269189, 0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
769 glNormal3d( 0.577350269189,-0.577350269189, 0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
770 glNormal3d( 0.577350269189,-0.577350269189,-0.577350269189); glVertex3d( RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
771 glNormal3d(-0.577350269189, 0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
772 glNormal3d(-0.577350269189, 0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0, RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
773 glNormal3d(-0.577350269189,-0.577350269189, 0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0, RADIUS );
774 glNormal3d(-0.577350269189,-0.577350269189,-0.577350269189); glVertex3d(-RADIUS, 0.0, 0.0 ); glVertex3d( 0.0,-RADIUS, 0.0 ); glVertex3d( 0.0, 0.0,-RADIUS );
782 void FGAPIENTRY glutWireTetrahedron( void )
784 /* Magic Numbers: r0 = ( 1, 0, 0 )
785 * r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
786 * r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
787 * r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
788 * |r0| = |r1| = |r2| = |r3| = 1
789 * Distance between any two points is 2 sqrt(6) / 3
791 * Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
794 double r0[3] = { 1.0, 0.0, 0.0 } ;
795 double r1[3] = { -0.333333333333, 0.942809041582, 0.0 } ;
796 double r2[3] = { -0.333333333333, -0.471404520791, 0.816496580928 } ;
797 double r3[3] = { -0.333333333333, -0.471404520791, -0.816496580928 } ;
799 glBegin( GL_LINE_LOOP ) ;
800 glNormal3d ( -1.0, 0.0, 0.0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r2 ) ;
801 glNormal3d ( 0.333333333333, -0.942809041582, 0.0 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r2 ) ; glVertex3dv ( r3 ) ;
802 glNormal3d ( 0.333333333333, 0.471404520791, -0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r1 ) ;
803 glNormal3d ( 0.333333333333, 0.471404520791, 0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r2 ) ;
810 void FGAPIENTRY glutSolidTetrahedron( void )
812 /* Magic Numbers: r0 = ( 1, 0, 0 )
813 * r1 = ( -1/3, 2 sqrt(2) / 3, 0 )
814 * r2 = ( -1/3, -sqrt(2) / 3, sqrt(6) / 3 )
815 * r3 = ( -1/3, -sqrt(2) / 3, -sqrt(6) / 3 )
816 * |r0| = |r1| = |r2| = |r3| = 1
817 * Distance between any two points is 2 sqrt(6) / 3
819 * Normals: The unit normals are simply the negative of the coordinates of the point not on the surface.
822 double r0[3] = { 1.0, 0.0, 0.0 } ;
823 double r1[3] = { -0.333333333333, 0.942809041582, 0.0 } ;
824 double r2[3] = { -0.333333333333, -0.471404520791, 0.816496580928 } ;
825 double r3[3] = { -0.333333333333, -0.471404520791, -0.816496580928 } ;
827 glBegin( GL_TRIANGLES ) ;
828 glNormal3d ( -1.0, 0.0, 0.0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r2 ) ;
829 glNormal3d ( 0.333333333333, -0.942809041582, 0.0 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r2 ) ; glVertex3dv ( r3 ) ;
830 glNormal3d ( 0.333333333333, 0.471404520791, -0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r3 ) ; glVertex3dv ( r1 ) ;
831 glNormal3d ( 0.333333333333, 0.471404520791, 0.816496580928 ) ; glVertex3dv ( r0 ) ; glVertex3dv ( r1 ) ; glVertex3dv ( r2 ) ;
838 double icos_r[12][3] = { { 1.0, 0.0, 0.0 },
839 { 0.447213595500, 0.894427191000, 0.0 }, { 0.447213595500, 0.276393202252, 0.850650808354 }, { 0.447213595500, -0.723606797748, 0.525731112119 }, { 0.447213595500, -0.723606797748, -0.525731112119 }, { 0.447213595500, 0.276393202252, -0.850650808354 },
840 { -0.447213595500, -0.894427191000, 0.0 }, { -0.447213595500, -0.276393202252, 0.850650808354 }, { -0.447213595500, 0.723606797748, 0.525731112119 }, { -0.447213595500, 0.723606797748, -0.525731112119 }, { -0.447213595500, -0.276393202252, -0.850650808354 },
841 { -1.0, 0.0, 0.0 } } ;
842 int icos_v [20][3] = { { 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 4 }, { 0, 4, 5 }, { 0, 5, 1 },
843 { 1, 8, 2 }, { 2, 7, 3 }, { 3, 6, 4 }, { 4, 10, 5 }, { 5, 9, 1 },
844 { 1, 9, 8 }, { 2, 8, 7 }, { 3, 7, 6 }, { 4, 6, 10 }, { 5, 10, 9 },
845 { 11, 9, 10 }, { 11, 8, 9 }, { 11, 7, 8 }, { 11, 6, 7 }, { 11, 10, 6 } } ;
847 void FGAPIENTRY glutWireIcosahedron( void )
850 for ( i = 0; i < 20; i++ )
853 normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
854 normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
855 normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
856 glBegin ( GL_LINE_LOOP ) ;
857 glNormal3dv ( normal ) ;
858 glVertex3dv ( icos_r[icos_v[i][0]] ) ;
859 glVertex3dv ( icos_r[icos_v[i][1]] ) ;
860 glVertex3dv ( icos_r[icos_v[i][2]] ) ;
868 void FGAPIENTRY glutSolidIcosahedron( void )
872 glBegin ( GL_TRIANGLES ) ;
873 for ( i = 0; i < 20; i++ )
876 normal[0] = ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) - ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) ;
877 normal[1] = ( icos_r[icos_v[i][1]][2] - icos_r[icos_v[i][0]][2] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) - ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][2] - icos_r[icos_v[i][0]][2] ) ;
878 normal[2] = ( icos_r[icos_v[i][1]][0] - icos_r[icos_v[i][0]][0] ) * ( icos_r[icos_v[i][2]][1] - icos_r[icos_v[i][0]][1] ) - ( icos_r[icos_v[i][1]][1] - icos_r[icos_v[i][0]][1] ) * ( icos_r[icos_v[i][2]][0] - icos_r[icos_v[i][0]][0] ) ;
879 glNormal3dv ( normal ) ;
880 glVertex3dv ( icos_r[icos_v[i][0]] ) ;
881 glVertex3dv ( icos_r[icos_v[i][1]] ) ;
882 glVertex3dv ( icos_r[icos_v[i][2]] ) ;
891 double rdod_r[14][3] = { { 0.0, 0.0, 1.0 },
892 { 0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, 0.707106781187, 0.5 }, { -0.707106781187, 0.000000000000, 0.5 }, { 0.000000000000, -0.707106781187, 0.5 },
893 { 0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, 0.707106781187, 0.0 }, { -0.707106781187, -0.707106781187, 0.0 }, { 0.707106781187, -0.707106781187, 0.0 },
894 { 0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, 0.707106781187, -0.5 }, { -0.707106781187, 0.000000000000, -0.5 }, { 0.000000000000, -0.707106781187, -0.5 },
895 { 0.0, 0.0, -1.0 } } ;
896 int rdod_v [12][4] = { { 0, 1, 5, 2 }, { 0, 2, 6, 3 }, { 0, 3, 7, 4 }, { 0, 4, 8, 1 },
897 { 5, 10, 6, 2 }, { 6, 11, 7, 3 }, { 7, 12, 8, 4 }, { 8, 9, 5, 1 },
898 { 5, 9, 13, 10 }, { 6, 10, 13, 11 }, { 7, 11, 13, 12 }, { 8, 12, 13, 9 } } ;
899 double rdod_n[12][3] = {
900 { 0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, 0.353553390594, 0.5 }, { -0.353553390594, -0.353553390594, 0.5 }, { 0.353553390594, -0.353553390594, 0.5 },
901 { 0.000000000000, 1.000000000000, 0.0 }, { -1.000000000000, 0.000000000000, 0.0 }, { 0.000000000000, -1.000000000000, 0.0 }, { 1.000000000000, 0.000000000000, 0.0 },
902 { 0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, 0.353553390594, -0.5 }, { -0.353553390594, -0.353553390594, -0.5 }, { 0.353553390594, -0.353553390594, -0.5 }
905 void FGAPIENTRY glutWireRhombicDodecahedron( void )
908 for ( i = 0; i < 12; i++ )
910 glBegin ( GL_LINE_LOOP ) ;
911 glNormal3dv ( rdod_n[i] ) ;
912 glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
913 glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
914 glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
915 glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
923 void FGAPIENTRY glutSolidRhombicDodecahedron( void )
927 glBegin ( GL_QUADS ) ;
928 for ( i = 0; i < 12; i++ )
930 glNormal3dv ( rdod_n[i] ) ;
931 glVertex3dv ( rdod_r[rdod_v[i][0]] ) ;
932 glVertex3dv ( rdod_r[rdod_v[i][1]] ) ;
933 glVertex3dv ( rdod_r[rdod_v[i][2]] ) ;
934 glVertex3dv ( rdod_r[rdod_v[i][3]] ) ;
942 static GLdouble tetrahedron_v[4][3] = /* Vertices */
944 { -0.5, -0.288675134595, -0.144337567297 },
945 { 0.5, -0.288675134595, -0.144337567297 },
946 { 0.0, 0.577350269189, -0.144337567297 },
947 { 0.0, 0.0, 0.672159013631 }
950 static GLint tetrahedron_i[4][3] = /* Vertex indices */
952 { 0, 1, 2 }, { 0, 2, 3 }, { 0, 3, 1 }, { 1, 3, 2 }
955 static GLdouble tetrahedron_n[4][3] = /* Normals */
958 { -0.816496580928, 0.471404520791, 0.333333333333 },
959 { 0.0, -0.942809041582, 0.333333333333 },
960 { 0.816496580928, 0.471404520791, 0.333333333333 }
963 void FGAPIENTRY glutWireSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
967 if ( num_levels == 0 )
970 for ( i = 0 ; i < NUM_FACES ; i++ )
972 glBegin ( GL_LINE_LOOP ) ;
973 glNormal3dv ( tetrahedron_n[i] ) ;
974 for ( j = 0; j < 3; j++ )
976 double x = offset[0] + scale * tetrahedron_v[tetrahedron_i[i][j]][0] ;
977 double y = offset[1] + scale * tetrahedron_v[tetrahedron_i[i][j]][1] ;
978 double z = offset[2] + scale * tetrahedron_v[tetrahedron_i[i][j]][2] ;
979 glVertex3d ( x, y, z ) ;
987 GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
990 local_offset[0] = offset[0] + scale * tetrahedron_v[0][0] ;
991 local_offset[1] = offset[1] + scale * tetrahedron_v[0][1] ;
992 local_offset[2] = offset[2] + scale * tetrahedron_v[0][2] ;
993 glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
994 local_offset[0] += scale ;
995 glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
996 local_offset[0] -= 0.5 * scale ;
997 local_offset[1] += 0.866025403784 * scale ;
998 glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
999 local_offset[1] -= 0.577350269189 * scale ;
1000 local_offset[2] += 0.816496580928 * scale ;
1001 glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ;
1005 void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale )
1009 if ( num_levels == 0 )
1011 glBegin ( GL_TRIANGLES ) ;
1013 for ( i = 0 ; i < NUM_FACES ; i++ )
1015 glNormal3dv ( tetrahedron_n[i] ) ;
1016 for ( j = 0; j < 3; j++ )
1018 double x = offset[0] + scale * tetrahedron_v[tetrahedron_i[i][j]][0] ;
1019 double y = offset[1] + scale * tetrahedron_v[tetrahedron_i[i][j]][1] ;
1020 double z = offset[2] + scale * tetrahedron_v[tetrahedron_i[i][j]][2] ;
1021 glVertex3d ( x, y, z ) ;
1029 GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */
1032 local_offset[0] = offset[0] + scale * tetrahedron_v[0][0] ;
1033 local_offset[1] = offset[1] + scale * tetrahedron_v[0][1] ;
1034 local_offset[2] = offset[2] + scale * tetrahedron_v[0][2] ;
1035 glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
1036 local_offset[0] += scale ;
1037 glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
1038 local_offset[0] -= 0.5 * scale ;
1039 local_offset[1] += 0.866025403784 * scale ;
1040 glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
1041 local_offset[1] -= 0.577350269189 * scale ;
1042 local_offset[2] += 0.816496580928 * scale ;
1043 glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ;
1049 /*** END OF FILE ***/