X-Git-Url: http://git.mutantstargoat.com/user/nuclear/?a=blobdiff_plain;f=src%2Ffg_geometry.c;h=57301a066e7df40c4036180ed7823378a0ccf78d;hb=84bbdfc8e7dfb2e220a4d155159be91e88ea9433;hp=de1cbadae2e27c1d4e847042e8146c6c06fc7052;hpb=1b5ee849ba61b667aeba474a7e03406196478bee;p=freeglut diff --git a/src/fg_geometry.c b/src/fg_geometry.c index de1cbad..57301a0 100644 --- a/src/fg_geometry.c +++ b/src/fg_geometry.c @@ -27,1189 +27,2008 @@ #include #include "fg_internal.h" +#include "fg_gl2.h" +#include + +/* declare for drawing using the different OpenGL versions here so we can + have a nice code order below */ +#ifndef GL_ES_VERSION_2_0 +static void fghDrawGeometryWire11(GLfloat *vertices, GLfloat *normals, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + ); +static void fghDrawGeometrySolid11(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart); +#endif +static void fghDrawGeometryWire20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2, + GLint attribute_v_coord, GLint attribute_v_normal + ); +static void fghDrawGeometrySolid20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart, + GLint attribute_v_coord, GLint attribute_v_normal); + +/* Drawing geometry: + * Explanation of the functions has to be separate for the polyhedra and + * the non-polyhedra (objects with a circular cross-section). + * Polyhedra: + * - We have only implemented the five platonic solids and the rhomboid + * dodecahedron. If you need more types of polyhedra, please see + * CPolyhedron in MRPT + * - Solids are drawn by glDrawArrays if composed of triangular faces + * (the tetrahedron, octahedron, and icosahedron), or are first + * decomposed into triangles and then drawn by glDrawElements if its + * faces are squares or pentagons (cube, dodecahedron and rhombic + * dodecahedron) as some vertices are repeated in that case. + * - WireFrame drawing is done using a GL_LINE_LOOP per face, and thus + * issuing one draw call per face. glDrawArrays is always used as no + * triangle decomposition is needed to draw faces. We use the "first" + * parameter in glDrawArrays to go from face to face. + * + * Non-polyhedra: + * - We have implemented the sphere, cylinder, cone and torus. + * - All shapes are characterized by two parameters: the number of + * subdivisions along two axes used to construct the shape's vertices + * (e.g. stacks and slices for the sphere). + * As different subdivisions are most suitable for different shapes, + * and are thus also named differently, I wont provide general comments + * on them here. + * - Solids are drawn using glDrawArrays and GL_TRIANGLE_STRIP. Each + * strip covers one revolution around one of the two subdivision axes + * of the shape. + * - WireFrame drawing is done for the subdivisions along the two axes + * separately, usually using GL_LINE_LOOP. Vertex index arrays are + * built containing the vertices to be drawn for each loop, which are + * then drawn using multiple calls to glDrawElements. As the number of + * subdivisions along the two axes is not guaranteed to be equal, the + * vertex indices for e.g. stacks and slices are stored in separate + * arrays, which makes the input to the drawing function a bit clunky, + * but allows for the same drawing function to be used for all shapes. + */ -/* - * TODO BEFORE THE STABLE RELEASE: - * - * Following functions have been contributed by Andreas Umbach. - * - * glutWireCube() -- looks OK - * glutSolidCube() -- OK - * - * Those functions have been implemented by John Fay. - * - * glutWireTorus() -- looks OK - * glutSolidTorus() -- looks OK - * glutWireDodecahedron() -- looks OK - * glutSolidDodecahedron() -- looks OK - * glutWireOctahedron() -- looks OK - * glutSolidOctahedron() -- looks OK - * glutWireTetrahedron() -- looks OK - * glutSolidTetrahedron() -- looks OK - * glutWireIcosahedron() -- looks OK - * glutSolidIcosahedron() -- looks OK + +/** + * Draw geometric shape in wire mode (only edges) * - * The Following functions have been updated by Nigel Stewart, based - * on FreeGLUT 2.0.0 implementations: + * Arguments: + * GLfloat *vertices, GLfloat *normals, GLsizei numVertices + * The vertex coordinate and normal buffers, and the number of entries in + * those + * GLushort *vertIdxs + * a vertex indices buffer, optional (never passed for the polyhedra) + * GLsizei numParts, GLsizei numVertPerPart + * polyhedra: number of faces, and the number of vertices for drawing + * each face + * non-polyhedra: number of edges to draw for first subdivision (not + * necessarily equal to number of subdivisions requested by user, e.g. + * as each subdivision is enclosed by two edges), and number of + * vertices for drawing each + * numParts * numVertPerPart gives the number of entries in the vertex + * array vertIdxs + * GLenum vertexMode + * vertex drawing mode (e.g. always GL_LINE_LOOP for polyhedra, varies + * for others) + * GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + * non-polyhedra only: same as the above, but now for subdivisions along + * the other axis. Always drawn as GL_LINE_LOOP. * - * glutWireSphere() -- looks OK - * glutSolidSphere() -- looks OK - * glutWireCone() -- looks OK - * glutSolidCone() -- looks OK + * Feel free to contribute better naming ;) */ +static void fghDrawGeometryWire(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + ) +{ + GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord; + GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal; + + if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1)) + /* User requested a 2.0 draw */ + fghDrawGeometryWire20(vertices, normals, numVertices, + vertIdxs, numParts, numVertPerPart, vertexMode, + vertIdxs2, numParts2, numVertPerPart2, + attribute_v_coord, attribute_v_normal); +#ifndef GL_ES_VERSION_2_0 + else + fghDrawGeometryWire11(vertices, normals, + vertIdxs, numParts, numVertPerPart, vertexMode, + vertIdxs2, numParts2, numVertPerPart2); +#endif +} - -/* -- INTERFACE FUNCTIONS -------------------------------------------------- */ - -/* - * Draws a wireframed cube. Code contributed by Andreas Umbach +/* Draw the geometric shape with filled triangles + * + * Arguments: + * GLfloat *vertices, GLfloat *normals, GLsizei numVertices + * The vertex coordinate and normal buffers, and the number of entries in + * those + * GLushort *vertIdxs + * a vertex indices buffer, optional (not passed for the polyhedra with + * triangular faces) + * GLsizei numParts, GLsizei numVertPerPart + * polyhedra: not used for polyhedra with triangular faces + (numEdgePerFace==3), as each vertex+normal pair is drawn only once, + so no vertex indices are used. + Else, the shape was triangulated (DECOMPOSE_TO_TRIANGLE), leading to + reuse of some vertex+normal pairs, and thus the need to draw with + glDrawElements. numParts is always 1 in this case (we can draw the + whole object with one call to glDrawElements as the vertex index + array contains separate triangles), and numVertPerPart indicates + the number of vertex indices in the vertex array. + * non-polyhedra: number of parts (GL_TRIANGLE_STRIPs) to be drawn + separately (numParts calls to glDrawElements) to create the object. + numVertPerPart indicates the number of vertex indices to be + processed at each draw call. + * numParts * numVertPerPart gives the number of entries in the vertex + * array vertIdxs */ -void FGAPIENTRY glutWireCube( GLdouble dSize ) +static void fghDrawGeometrySolid(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart) { - double size = dSize * 0.5; - - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCube" ); + GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord; + GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal; + + if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1)) + /* User requested a 2.0 draw */ + fghDrawGeometrySolid20(vertices, normals, numVertices, + vertIdxs, numParts, numVertIdxsPerPart, + attribute_v_coord, attribute_v_normal); +#ifndef GL_ES_VERSION_2_0 + else + fghDrawGeometrySolid11(vertices, normals, numVertices, + vertIdxs, numParts, numVertIdxsPerPart); +#endif +} -# define V(a,b,c) glVertex3d( a size, b size, c size ); -# define N(a,b,c) glNormal3d( a, b, c ); - /* PWO: I dared to convert the code to use macros... */ - glBegin( GL_LINE_LOOP ); N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); glEnd(); - glBegin( GL_LINE_LOOP ); N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); glEnd(); - glBegin( GL_LINE_LOOP ); N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); glEnd(); - glBegin( GL_LINE_LOOP ); N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); glEnd(); - glBegin( GL_LINE_LOOP ); N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); glEnd(); - glBegin( GL_LINE_LOOP ); N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); glEnd(); -# undef V -# undef N +/* Version for OpenGL (ES) 1.1 */ +#ifndef GL_ES_VERSION_2_0 +static void fghDrawGeometryWire11(GLfloat *vertices, GLfloat *normals, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + ) +{ + int i; + + glEnableClientState(GL_VERTEX_ARRAY); + glEnableClientState(GL_NORMAL_ARRAY); + + glVertexPointer(3, GL_FLOAT, 0, vertices); + glNormalPointer(GL_FLOAT, 0, normals); + + + if (!vertIdxs) + /* Draw per face (TODO: could use glMultiDrawArrays if available) */ + for (i=0; i - */ -void FGAPIENTRY glutSolidCube( GLdouble dSize ) + +static void fghDrawGeometrySolid11(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart) { - double size = dSize * 0.5; + int i; - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCube" ); + glEnableClientState(GL_VERTEX_ARRAY); + glEnableClientState(GL_NORMAL_ARRAY); -# define V(a,b,c) glVertex3d( a size, b size, c size ); -# define N(a,b,c) glNormal3d( a, b, c ); - - /* PWO: Again, I dared to convert the code to use macros... */ - glBegin( GL_QUADS ); - N( 1.0, 0.0, 0.0); V(+,-,+); V(+,-,-); V(+,+,-); V(+,+,+); - N( 0.0, 1.0, 0.0); V(+,+,+); V(+,+,-); V(-,+,-); V(-,+,+); - N( 0.0, 0.0, 1.0); V(+,+,+); V(-,+,+); V(-,-,+); V(+,-,+); - N(-1.0, 0.0, 0.0); V(-,-,+); V(-,+,+); V(-,+,-); V(-,-,-); - N( 0.0,-1.0, 0.0); V(-,-,+); V(-,-,-); V(+,-,-); V(+,-,+); - N( 0.0, 0.0,-1.0); V(-,-,-); V(-,+,-); V(+,+,-); V(+,-,-); - glEnd(); - -# undef V -# undef N -} + glVertexPointer(3, GL_FLOAT, 0, vertices); + glNormalPointer(GL_FLOAT, 0, normals); -/* - * Compute lookup table of cos and sin values forming a cirle - * - * Notes: - * It is the responsibility of the caller to free these tables - * The size of the table is (n+1) to form a connected loop - * The last entry is exactly the same as the first - * The sign of n can be flipped to get the reverse loop - */ + if (!vertIdxs) + glDrawArrays(GL_TRIANGLES, 0, numVertices); + else + if (numParts>1) + for (i=0; i= 2.0 */ +static void fghDrawGeometryWire20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2, + GLint attribute_v_coord, GLint attribute_v_normal + ) { + GLuint vbo_coords = 0, vbo_normals = 0, + ibo_elements = 0, ibo_elements2 = 0; + GLsizei numVertIdxs = numParts * numVertPerPart; + GLsizei numVertIdxs2 = numParts2 * numVertPerPart2; int i; - /* Table size, the sign of n flips the circle direction */ + if (numVertices > 0 && attribute_v_coord != -1) { + fghGenBuffers(1, &vbo_coords); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]), + vertices, FGH_STATIC_DRAW); + } + + if (numVertices > 0 && attribute_v_normal != -1) { + fghGenBuffers(1, &vbo_normals); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]), + normals, FGH_STATIC_DRAW); + } + + if (vertIdxs != NULL) { + fghGenBuffers(1, &ibo_elements); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]), + vertIdxs, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); + } - const int size = abs(n); + if (vertIdxs2 != NULL) { + fghGenBuffers(1, &ibo_elements2); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements2); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs2 * sizeof(vertIdxs2[0]), + vertIdxs2, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); + } - /* Determine the angle between samples */ + if (vbo_coords) { + fghEnableVertexAttribArray(attribute_v_coord); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghVertexAttribPointer( + attribute_v_coord, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } - const double angle = 2*M_PI/(double)( ( n == 0 ) ? 1 : n ); + if (vbo_normals) { + fghEnableVertexAttribArray(attribute_v_normal); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghVertexAttribPointer( + attribute_v_normal, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } - /* Allocate memory for n samples, plus duplicate of first entry at the end */ + if (!vertIdxs) { + /* Draw per face (TODO: could use glMultiDrawArrays if available) */ + for (i=0; i= 2.0 */ +static void fghDrawGeometrySolid20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart, + GLint attribute_v_coord, GLint attribute_v_normal) +{ + GLuint vbo_coords = 0, vbo_normals = 0, ibo_elements = 0; + GLsizei numVertIdxs = numParts * numVertIdxsPerPart; + int i; + + if (numVertices > 0 && attribute_v_coord != -1) { + fghGenBuffers(1, &vbo_coords); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]), + vertices, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } + + if (numVertices > 0 && attribute_v_normal != -1) { + fghGenBuffers(1, &vbo_normals); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]), + normals, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); } + + if (vertIdxs != NULL) { + fghGenBuffers(1, &ibo_elements); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]), + vertIdxs, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); + } + + if (vbo_coords) { + fghEnableVertexAttribArray(attribute_v_coord); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghVertexAttribPointer( + attribute_v_coord, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + }; + + if (vbo_normals) { + fghEnableVertexAttribArray(attribute_v_normal); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghVertexAttribPointer( + attribute_v_normal, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + }; + + if (vertIdxs == NULL) { + glDrawArrays(GL_TRIANGLES, 0, numVertices); + } else { + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + if (numParts>1) { + for (i=0; i0)?1:0]; - r0 = 0.0; - r1 = sint2[(stacks>0)?1:0]; +}; - glBegin(GL_TRIANGLE_FAN); +/* Vertex indices */ +static GLubyte octahedron_vi[OCTAHEDRON_VERT_PER_OBJ] = +{ + 0, 1, 2, + 0, 5, 1, + 0, 2, 4, + 0, 4, 5, + 3, 2, 1, + 3, 1, 5, + 3, 4, 2, + 3, 5, 4 +}; +DECLARE_SHAPE_CACHE(octahedron,Octahedron,OCTAHEDRON) + +/* -- RhombicDodecahedron -- */ +#define RHOMBICDODECAHEDRON_NUM_VERT 14 +#define RHOMBICDODECAHEDRON_NUM_FACES 12 +#define RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE 4 +#define RHOMBICDODECAHEDRON_VERT_PER_OBJ (RHOMBICDODECAHEDRON_NUM_FACES*RHOMBICDODECAHEDRON_NUM_EDGE_PER_FACE) +#define RHOMBICDODECAHEDRON_VERT_ELEM_PER_OBJ (RHOMBICDODECAHEDRON_VERT_PER_OBJ*3) +#define RHOMBICDODECAHEDRON_VERT_PER_OBJ_TRI (RHOMBICDODECAHEDRON_VERT_PER_OBJ+RHOMBICDODECAHEDRON_NUM_FACES*2) /* 2 extra edges per face when drawing quads as triangles */ + +/* Vertex Coordinates */ +static GLfloat rhombicdodecahedron_v[RHOMBICDODECAHEDRON_NUM_VERT*3] = +{ + 0.0f, 0.0f, 1.0f, + 0.707106781187f, 0.0f, 0.5f, + 0.0f, 0.707106781187f, 0.5f, + -0.707106781187f, 0.0f, 0.5f, + 0.0f, -0.707106781187f, 0.5f, + 0.707106781187f, 0.707106781187f, 0.0f, + -0.707106781187f, 0.707106781187f, 0.0f, + -0.707106781187f, -0.707106781187f, 0.0f, + 0.707106781187f, -0.707106781187f, 0.0f, + 0.707106781187f, 0.0f, -0.5f, + 0.0f, 0.707106781187f, -0.5f, + -0.707106781187f, 0.0f, -0.5f, + 0.0f, -0.707106781187f, -0.5f, + 0.0f, 0.0f, -1.0f +}; +/* Normal Vectors */ +static GLfloat rhombicdodecahedron_n[RHOMBICDODECAHEDRON_NUM_FACES*3] = +{ + 0.353553390594f, 0.353553390594f, 0.5f, + -0.353553390594f, 0.353553390594f, 0.5f, + -0.353553390594f, -0.353553390594f, 0.5f, + 0.353553390594f, -0.353553390594f, 0.5f, + 0.0f, 1.0f, 0.0f, + - 1.0f, 0.0f, 0.0f, + 0.0f, - 1.0f, 0.0f, + 1.0f, 0.0f, 0.0f, + 0.353553390594f, 0.353553390594f, -0.5f, + -0.353553390594f, 0.353553390594f, -0.5f, + -0.353553390594f, -0.353553390594f, -0.5f, + 0.353553390594f, -0.353553390594f, -0.5f +}; - glNormal3d(0,0,1); - glVertex3d(0,0,radius); +/* Vertex indices */ +static GLubyte rhombicdodecahedron_vi[RHOMBICDODECAHEDRON_VERT_PER_OBJ] = +{ + 0, 1, 5, 2, + 0, 2, 6, 3, + 0, 3, 7, 4, + 0, 4, 8, 1, + 5, 10, 6, 2, + 6, 11, 7, 3, + 7, 12, 8, 4, + 8, 9, 5, 1, + 5, 9, 13, 10, + 6, 10, 13, 11, + 7, 11, 13, 12, + 8, 12, 13, 9 +}; +DECLARE_SHAPE_CACHE_DECOMPOSE_TO_TRIANGLE(rhombicdodecahedron,RhombicDodecahedron,RHOMBICDODECAHEDRON) - for (j=slices; j>=0; j--) - { - glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 ); - glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius); - } +/* -- Tetrahedron -- */ +/* Magic Numbers: r0 = ( 1, 0, 0 ) + * r1 = ( -1/3, 2 sqrt(2) / 3, 0 ) + * r2 = ( -1/3, - sqrt(2) / 3, sqrt(6) / 3 ) + * r3 = ( -1/3, - sqrt(2) / 3, -sqrt(6) / 3 ) + * |r0| = |r1| = |r2| = |r3| = 1 + * Distance between any two points is 2 sqrt(6) / 3 + * + * Normals: The unit normals are simply the negative of the coordinates of the point not on the surface. + */ +#define TETRAHEDRON_NUM_VERT 4 +#define TETRAHEDRON_NUM_FACES 4 +#define TETRAHEDRON_NUM_EDGE_PER_FACE 3 +#define TETRAHEDRON_VERT_PER_OBJ (TETRAHEDRON_NUM_FACES*TETRAHEDRON_NUM_EDGE_PER_FACE) +#define TETRAHEDRON_VERT_ELEM_PER_OBJ (TETRAHEDRON_VERT_PER_OBJ*3) +#define TETRAHEDRON_VERT_PER_OBJ_TRI TETRAHEDRON_VERT_PER_OBJ + +/* Vertex Coordinates */ +static GLfloat tetrahedron_v[TETRAHEDRON_NUM_VERT*3] = +{ + 1.0f, 0.0f, 0.0f, + -0.333333333333f, 0.942809041582f, 0.0f, + -0.333333333333f, -0.471404520791f, 0.816496580928f, + -0.333333333333f, -0.471404520791f, -0.816496580928f +}; +/* Normal Vectors */ +static GLfloat tetrahedron_n[TETRAHEDRON_NUM_FACES*3] = +{ + - 1.0f, 0.0f, 0.0f, + 0.333333333333f, -0.942809041582f, 0.0f, + 0.333333333333f, 0.471404520791f, -0.816496580928f, + 0.333333333333f, 0.471404520791f, 0.816496580928f +}; - glEnd(); +/* Vertex indices */ +static GLubyte tetrahedron_vi[TETRAHEDRON_VERT_PER_OBJ] = +{ + 1, 3, 2, + 0, 2, 3, + 0, 3, 1, + 0, 1, 2 +}; +DECLARE_SHAPE_CACHE(tetrahedron,Tetrahedron,TETRAHEDRON) - /* Cover each stack with a quad strip, except the top and bottom stacks */ +/* -- Sierpinski Sponge -- */ +static unsigned int ipow (int x, unsigned int y) +{ + return y==0? 1: y==1? x: (y%2? x: 1) * ipow(x*x, y/2); +} - for( i=1; i 0 ) + { + double local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */ + unsigned int stride = ipow(4,--numLevels)*TETRAHEDRON_VERT_ELEM_PER_OBJ; + scale /= 2.0 ; + for ( i = 0 ; i < TETRAHEDRON_NUM_FACES ; i++ ) { - glNormal3d(cost1[j]*r0, sint1[j]*r0, z0 ); - glVertex3d(cost1[j]*r0*radius, sint1[j]*r0*radius, z0*radius); + int idx = i*3; + local_offset[0] = offset[0] + scale * tetrahedron_v[idx ]; + local_offset[1] = offset[1] + scale * tetrahedron_v[idx+1]; + local_offset[2] = offset[2] + scale * tetrahedron_v[idx+2]; + fghSierpinskiSpongeGenerate ( numLevels, local_offset, scale, vertices+i*stride, normals+i*stride ); } - - glEnd(); - - /* Release sin and cos tables */ - - free(sint1); - free(cost1); - free(sint2); - free(cost2); + } } +/* -- Now the various non-polyhedra (shapes involving circles) -- */ /* - * Draws a wire sphere + * Compute lookup table of cos and sin values forming a circle + * (or half circle if halfCircle==TRUE) + * + * Notes: + * It is the responsibility of the caller to free these tables + * The size of the table is (n+1) to form a connected loop + * The last entry is exactly the same as the first + * The sign of n can be flipped to get the reverse loop */ -void FGAPIENTRY glutWireSphere(GLdouble radius, GLint slices, GLint stacks) +static void fghCircleTable(GLfloat **sint, GLfloat **cost, const int n, const GLboolean halfCircle) { - int i,j; - - /* Adjust z and radius as stacks and slices are drawn. */ - - double r; - double x,y,z; - - /* Pre-computed circle */ + int i; + + /* Table size, the sign of n flips the circle direction */ + const int size = abs(n); - double *sint1,*cost1; - double *sint2,*cost2; + /* Determine the angle between samples */ + const GLfloat angle = (halfCircle?1:2)*(GLfloat)M_PI/(GLfloat)( ( n == 0 ) ? 1 : n ); - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSphere" ); + /* Allocate memory for n samples, plus duplicate of first entry at the end */ + *sint = malloc(sizeof(GLfloat) * (size+1)); + *cost = malloc(sizeof(GLfloat) * (size+1)); - fghCircleTable(&sint1,&cost1,-slices ); - fghCircleTable(&sint2,&cost2, stacks*2); + /* Bail out if memory allocation fails, fgError never returns */ + if (!(*sint) || !(*cost)) + { + free(*sint); + free(*cost); + fgError("Failed to allocate memory in fghCircleTable"); + } - /* Draw a line loop for each stack */ + /* Compute cos and sin around the circle */ + (*sint)[0] = 0.0; + (*cost)[0] = 1.0; - for (i=1; i 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateSphere: too many slices or stacks requested, indices will wrap"); + + /* precompute values on unit circle */ + fghCircleTable(&sint1,&cost1,-slices,FALSE); + fghCircleTable(&sint2,&cost2, stacks,TRUE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) { - glBegin(GL_LINE_STRIP); - - for(j=0; j<=stacks; j++) - { - x = cost1[i]*sint2[j]; - y = sint1[i]*sint2[j]; - z = cost2[j]; - - glNormal3d(x,y,z); - glVertex3d(x*radius,y*radius,z*radius); - } + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateSphere"); + } - glEnd(); + /* top */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = radius; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = 1.f; + idx = 3; + + /* each stack */ + for( i=1; i 0 ) ? stacks : 1 ); - const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 ); - - /* Scaling factors for vertex normals */ - - const double cosn = ( height / sqrt ( height * height + base * base )); - const double sinn = ( base / sqrt ( height * height + base * base )); + int idx = 0; /* idx into vertex/normal buffer */ /* Pre-computed circle */ + GLfloat *sint,*cost; - double *sint,*cost; - - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCone" ); - - fghCircleTable(&sint,&cost,-slices); - - /* Cover the circular base with a triangle fan... */ - - z0 = 0.0; - z1 = zStep; - - r0 = base; - r1 = r0 - rStep; - - glBegin(GL_TRIANGLE_FAN); + /* Step in z and radius as stacks are drawn. */ + GLfloat z = 0; + GLfloat r = (GLfloat)base; - glNormal3d(0.0,0.0,-1.0); - glVertex3d(0.0,0.0, z0 ); + const GLfloat zStep = (GLfloat)height / ( ( stacks > 0 ) ? stacks : 1 ); + const GLfloat rStep = (GLfloat)base / ( ( stacks > 0 ) ? stacks : 1 ); - for (j=0; j<=slices; j++) - glVertex3d(cost[j]*r0, sint[j]*r0, z0); + /* Scaling factors for vertex normals */ + const GLfloat cosn = (GLfloat) (height / sqrt( height * height + base * base )); + const GLfloat sinn = (GLfloat) (base / sqrt( height * height + base * base )); - glEnd(); - /* Cover each stack with a quad strip, except the top stack */ - for( i=0; i 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateCone: too many slices or stacks requested, indices will wrap"); - z0 = z1; z1 += zStep; - r0 = r1; r1 -= rStep; + /* Pre-computed circle */ + fghCircleTable(&sint,&cost,-slices,FALSE); - glEnd(); + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateCone"); } - /* The top stack is covered with individual triangles */ - - glBegin(GL_TRIANGLES); - - glNormal3d(cost[0]*sinn, sint[0]*sinn, cosn); + /* bottom */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = z; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = -1.f; + idx = 3; + /* other on bottom (get normals right) */ + for (j=0; j 0 ) ? stacks : 1 ); - const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 ); - const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 ); + /* Pre-computed circle */ + GLfloat *sint,*cost; - /* Scaling factors for vertex normals */ + /* number of unique vertices */ + if (slices==0 || stacks<1) + { + /* nothing to generate */ + *nVert = 0; + return; + } + *nVert = slices*(stacks+3)+2; /* need two extra stacks for closing off top and bottom with correct normals */ - const double cosn = ( height / sqrt ( height * height + base * base )); - const double sinn = ( base / sqrt ( height * height + base * base )); + if ((*nVert) > 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateCylinder: too many slices or stacks requested, indices will wrap"); /* Pre-computed circle */ + fghCircleTable(&sint,&cost,-slices,FALSE); - double *sint,*cost; + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateCylinder"); + } - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCone" ); + z=0; + /* top on Z-axis */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = 0.f; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = -1.f; + idx = 3; + /* other on top (get normals right) */ + for (j=0; j 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateTorus: too many slices or stacks requested, indices will wrap"); + + /* precompute values on unit circle */ + fghCircleTable(&spsi,&cpsi, nRings,FALSE); + fghCircleTable(&sphi,&cphi,-nSides,FALSE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateTorus"); + } - for (j=0; j 0 ) ? stacks : 1 ); + if (dSize!=1.f) + { + /* Need to build new vertex list containing vertices for cube of different size */ + int i; - /* Pre-computed circle */ + vertices = malloc(CUBE_VERT_ELEM_PER_OBJ * sizeof(GLfloat)); - double *sint,*cost; + /* Bail out if memory allocation fails, fgError never returns */ + if (!vertices) + { + free(vertices); + fgError("Failed to allocate memory in fghCube"); + } - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCylinder" ); + for (i=0; i=0; j--) - glVertex3d(cost[j]*radius, sint[j]*radius, height); - glEnd(); + /* Generate elements */ + fghSierpinskiSpongeGenerate ( numLevels, offset, scale, vertices, normals ); - /* Do the stacks */ + /* Draw and cleanup */ + if (useWireMode) + fghDrawGeometryWire (vertices,normals,numVert, + NULL,numFace,TETRAHEDRON_NUM_EDGE_PER_FACE,GL_LINE_LOOP, + NULL,0,0); + else + fghDrawGeometrySolid(vertices,normals,numVert,NULL,1,0); - z0 = 0.0; - z1 = zStep; + free(vertices); + free(normals ); + } +} - for (i=1; i<=stacks; i++) + +static void fghSphere( GLfloat radius, GLint slices, GLint stacks, GLboolean useWireMode ) +{ + int i,j,idx, nVert; + GLfloat *vertices, *normals; + + /* Generate vertices and normals */ + fghGenerateSphere(radius,slices,stacks,&vertices,&normals,&nVert); + + if (nVert==0) + /* nothing to draw */ + return; + + if (useWireMode) { - if (i==stacks) - z1 = height; + GLushort *sliceIdx, *stackIdx; + /* First, generate vertex index arrays for drawing with glDrawElements + * We have a bunch of line_loops to draw for each stack, and a + * bunch for each slice. + */ + + sliceIdx = malloc(slices*(stacks+1)*sizeof(GLushort)); + stackIdx = malloc(slices*(stacks-1)*sizeof(GLushort)); + if (!(stackIdx) || !(sliceIdx)) + { + free(stackIdx); + free(sliceIdx); + fgError("Failed to allocate memory in fghSphere"); + } - glBegin(GL_QUAD_STRIP); - for (j=0; j<=slices; j++ ) + /* generate for each stack */ + for (i=0,idx=0; i 0 ) ? stacks : 1 ); - /* Pre-computed circle */ + /* draw */ + fghDrawGeometrySolid(vertices,normals,nVert,stripIdx,stacks,(slices+1)*2); - double *sint,*cost; + /* cleanup allocated memory */ + free(stripIdx); + } + + /* cleanup allocated memory */ + free(vertices); + free(normals); +} - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCylinder" ); +static void fghCone( GLfloat base, GLfloat height, GLint slices, GLint stacks, GLboolean useWireMode ) +{ + int i,j,idx, nVert; + GLfloat *vertices, *normals; - fghCircleTable(&sint,&cost,-slices); + /* Generate vertices and normals */ + /* Note, (stacks+1)*slices vertices for side of object, slices+1 for top and bottom closures */ + fghGenerateCone(base,height,slices,stacks,&vertices,&normals,&nVert); - /* Draw the stacks... */ + if (nVert==0) + /* nothing to draw */ + return; - for (i=0; i<=stacks; i++) + if (useWireMode) { - if (i==stacks) - z = height; - - glBegin(GL_LINE_LOOP); + GLushort *sliceIdx, *stackIdx; + /* First, generate vertex index arrays for drawing with glDrawElements + * We have a bunch of line_loops to draw for each stack, and a + * bunch for each slice. + */ + + stackIdx = malloc(slices*stacks*sizeof(GLushort)); + sliceIdx = malloc(slices*2 *sizeof(GLushort)); + if (!(stackIdx) || !(sliceIdx)) + { + free(stackIdx); + free(sliceIdx); + fgError("Failed to allocate memory in fghCone"); + } - for( j=0; j 0 ) - { - GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */ - num_levels -- ; - scale /= 2.0 ; - for ( i = 0 ; i < NUM_TETR_FACES ; i++ ) - { - local_offset[0] = offset[0] + scale * tet_r[i][0] ; - local_offset[1] = offset[1] + scale * tet_r[i][1] ; - local_offset[2] = offset[2] + scale * tet_r[i][2] ; - glutWireSierpinskiSponge ( num_levels, local_offset, scale ) ; - } - } +void FGAPIENTRY glutWireSierpinskiSponge ( int num_levels, double offset[3], double scale ) +{ + FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireSierpinskiSponge" ); + fghSierpinskiSponge ( num_levels, offset, (GLfloat)scale, TRUE ); } - -void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, GLdouble offset[3], GLdouble scale ) +void FGAPIENTRY glutSolidSierpinskiSponge ( int num_levels, double offset[3], double scale ) { - int i, j ; - - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSierpinskiSponge" ); - - if ( num_levels == 0 ) - { - glBegin ( GL_TRIANGLES ) ; + FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidSierpinskiSponge" ); + fghSierpinskiSponge ( num_levels, offset, (GLfloat)scale, FALSE ); +} - for ( i = 0 ; i < NUM_TETR_FACES ; i++ ) - { - glNormal3d ( -tet_r[i][0], -tet_r[i][1], -tet_r[i][2] ) ; - for ( j = 0; j < 3; j++ ) - { - double x = offset[0] + scale * tet_r[tet_i[i][j]][0] ; - double y = offset[1] + scale * tet_r[tet_i[i][j]][1] ; - double z = offset[2] + scale * tet_r[tet_i[i][j]][2] ; - glVertex3d ( x, y, z ) ; - } - } +DECLARE_SHAPE_INTERFACE(Tetrahedron) - glEnd () ; - } - else if ( num_levels > 0 ) - { - GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */ - num_levels -- ; - scale /= 2.0 ; - for ( i = 0 ; i < NUM_TETR_FACES ; i++ ) - { - local_offset[0] = offset[0] + scale * tet_r[i][0] ; - local_offset[1] = offset[1] + scale * tet_r[i][1] ; - local_offset[2] = offset[2] + scale * tet_r[i][2] ; - glutSolidSierpinskiSponge ( num_levels, local_offset, scale ) ; - } - } -} /*** END OF FILE ***/