X-Git-Url: http://git.mutantstargoat.com/user/nuclear/?a=blobdiff_plain;f=src%2Ffg_geometry.c;h=57301a066e7df40c4036180ed7823378a0ccf78d;hb=a3a9bf33c8d3100c09bae73c1f390ac2316529d7;hp=ee249846b932774208c33004884a7ccff169fe51;hpb=7425c4c305215701db45769fe9d43f76088fe055;p=freeglut diff --git a/src/fg_geometry.c b/src/fg_geometry.c index ee24984..57301a0 100644 --- a/src/fg_geometry.c +++ b/src/fg_geometry.c @@ -27,175 +27,468 @@ #include #include "fg_internal.h" - -/* - * Need more types of polyhedra? See CPolyhedron in MRPT +#include "fg_gl2.h" +#include + +/* declare for drawing using the different OpenGL versions here so we can + have a nice code order below */ +#ifndef GL_ES_VERSION_2_0 +static void fghDrawGeometryWire11(GLfloat *vertices, GLfloat *normals, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + ); +static void fghDrawGeometrySolid11(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart); +#endif +static void fghDrawGeometryWire20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2, + GLint attribute_v_coord, GLint attribute_v_normal + ); +static void fghDrawGeometrySolid20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart, + GLint attribute_v_coord, GLint attribute_v_normal); + +/* Drawing geometry: + * Explanation of the functions has to be separate for the polyhedra and + * the non-polyhedra (objects with a circular cross-section). + * Polyhedra: + * - We have only implemented the five platonic solids and the rhomboid + * dodecahedron. If you need more types of polyhedra, please see + * CPolyhedron in MRPT + * - Solids are drawn by glDrawArrays if composed of triangular faces + * (the tetrahedron, octahedron, and icosahedron), or are first + * decomposed into triangles and then drawn by glDrawElements if its + * faces are squares or pentagons (cube, dodecahedron and rhombic + * dodecahedron) as some vertices are repeated in that case. + * - WireFrame drawing is done using a GL_LINE_LOOP per face, and thus + * issuing one draw call per face. glDrawArrays is always used as no + * triangle decomposition is needed to draw faces. We use the "first" + * parameter in glDrawArrays to go from face to face. + * + * Non-polyhedra: + * - We have implemented the sphere, cylinder, cone and torus. + * - All shapes are characterized by two parameters: the number of + * subdivisions along two axes used to construct the shape's vertices + * (e.g. stacks and slices for the sphere). + * As different subdivisions are most suitable for different shapes, + * and are thus also named differently, I wont provide general comments + * on them here. + * - Solids are drawn using glDrawArrays and GL_TRIANGLE_STRIP. Each + * strip covers one revolution around one of the two subdivision axes + * of the shape. + * - WireFrame drawing is done for the subdivisions along the two axes + * separately, usually using GL_LINE_LOOP. Vertex index arrays are + * built containing the vertices to be drawn for each loop, which are + * then drawn using multiple calls to glDrawElements. As the number of + * subdivisions along the two axes is not guaranteed to be equal, the + * vertex indices for e.g. stacks and slices are stored in separate + * arrays, which makes the input to the drawing function a bit clunky, + * but allows for the same drawing function to be used for all shapes. */ -/* General function for drawing geometry. As for all geometry we have no - * redundancy (or hardly any in the case of cones and cylinders) in terms - * of the vertex/normal combinations, we just use glDrawArrays. - * useWireMode controls the drawing of solids (false) or wire frame - * versions (TRUE) of the geometry you pass +/** + * Draw geometric shape in wire mode (only edges) + * + * Arguments: + * GLfloat *vertices, GLfloat *normals, GLsizei numVertices + * The vertex coordinate and normal buffers, and the number of entries in + * those + * GLushort *vertIdxs + * a vertex indices buffer, optional (never passed for the polyhedra) + * GLsizei numParts, GLsizei numVertPerPart + * polyhedra: number of faces, and the number of vertices for drawing + * each face + * non-polyhedra: number of edges to draw for first subdivision (not + * necessarily equal to number of subdivisions requested by user, e.g. + * as each subdivision is enclosed by two edges), and number of + * vertices for drawing each + * numParts * numVertPerPart gives the number of entries in the vertex + * array vertIdxs + * GLenum vertexMode + * vertex drawing mode (e.g. always GL_LINE_LOOP for polyhedra, varies + * for others) + * GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + * non-polyhedra only: same as the above, but now for subdivisions along + * the other axis. Always drawn as GL_LINE_LOOP. + * + * Feel free to contribute better naming ;) */ -static void fghDrawGeometry(GLdouble *vertices, GLdouble *normals, GLboolean *edgeFlags, GLsizei numVertices, GLsizei numFaces, GLsizei numEdgePerFace, GLboolean useWireMode) +static void fghDrawGeometryWire(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2 + ) { -# ifdef FREEGLUT_GLES - /* Solid drawing is the same for OpenGL 1.x and OpenGL ES 1.x, just - * no edge flags for ES. - * WireFrame drawing will have to be done per face though, using - * GL_LINE_LOOP and issuing one draw call per face. For triangles, - * we use glDrawArrays directly on the vertex data for each face, - * while for shapes that are composed of quads or pentagons, we use - * glDrawElements with index vector {0,1,2,5} or {0,1,2,8,5}, - * respectively. - * We use the first parameter in glDrawArrays or glDrawElements to - * go from face to face. - */ - if (useWireMode) - { - /* setup reading the right elements from vertex array */ - GLubyte vertIdx4[4] = {0,1,2,5}; - GLubyte vertIdx5[5] = {0,1,2,8,5}; - GLubyte *indices = NULL; - int vertStride, i, j; - - switch (numEdgePerFace) - { - case 3: - vertStride = 3; /* there are 3 vertices for each face in the array */ - break; - case 4: - indices = vertIdx4; - vertStride = 6; /* there are 6 vertices for each face in the array */ - break; - case 5: - indices = vertIdx5; - vertStride = 9; /* there are 9 vertices for each face in the array */ - break; - } + GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord; + GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal; + + if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1)) + /* User requested a 2.0 draw */ + fghDrawGeometryWire20(vertices, normals, numVertices, + vertIdxs, numParts, numVertPerPart, vertexMode, + vertIdxs2, numParts2, numVertPerPart2, + attribute_v_coord, attribute_v_normal); +#ifndef GL_ES_VERSION_2_0 + else + fghDrawGeometryWire11(vertices, normals, + vertIdxs, numParts, numVertPerPart, vertexMode, + vertIdxs2, numParts2, numVertPerPart2); +#endif +} + +/* Draw the geometric shape with filled triangles + * + * Arguments: + * GLfloat *vertices, GLfloat *normals, GLsizei numVertices + * The vertex coordinate and normal buffers, and the number of entries in + * those + * GLushort *vertIdxs + * a vertex indices buffer, optional (not passed for the polyhedra with + * triangular faces) + * GLsizei numParts, GLsizei numVertPerPart + * polyhedra: not used for polyhedra with triangular faces + (numEdgePerFace==3), as each vertex+normal pair is drawn only once, + so no vertex indices are used. + Else, the shape was triangulated (DECOMPOSE_TO_TRIANGLE), leading to + reuse of some vertex+normal pairs, and thus the need to draw with + glDrawElements. numParts is always 1 in this case (we can draw the + whole object with one call to glDrawElements as the vertex index + array contains separate triangles), and numVertPerPart indicates + the number of vertex indices in the vertex array. + * non-polyhedra: number of parts (GL_TRIANGLE_STRIPs) to be drawn + separately (numParts calls to glDrawElements) to create the object. + numVertPerPart indicates the number of vertex indices to be + processed at each draw call. + * numParts * numVertPerPart gives the number of entries in the vertex + * array vertIdxs + */ +static void fghDrawGeometrySolid(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart) +{ + GLint attribute_v_coord = fgStructure.CurrentWindow->Window.attribute_v_coord; + GLint attribute_v_normal = fgStructure.CurrentWindow->Window.attribute_v_normal; + + if (fgState.HasOpenGL20 && (attribute_v_coord != -1 || attribute_v_normal != -1)) + /* User requested a 2.0 draw */ + fghDrawGeometrySolid20(vertices, normals, numVertices, + vertIdxs, numParts, numVertIdxsPerPart, + attribute_v_coord, attribute_v_normal); +#ifndef GL_ES_VERSION_2_0 + else + fghDrawGeometrySolid11(vertices, normals, numVertices, + vertIdxs, numParts, numVertIdxsPerPart); +#endif +} - glEnableClientState(GL_VERTEX_ARRAY); - glEnableClientState(GL_NORMAL_ARRAY); - glVertexPointer(3, GL_DOUBLE, 0, vertices); - glNormalPointer(GL_DOUBLE, 0, normals); - if (numEdgePerFace==3) - for (i=0; i1) + for (i=0; i= 2.0 */ +static void fghDrawGeometryWire20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertPerPart, GLenum vertexMode, + GLushort *vertIdxs2, GLsizei numParts2, GLsizei numVertPerPart2, + GLint attribute_v_coord, GLint attribute_v_normal + ) +{ + GLuint vbo_coords = 0, vbo_normals = 0, + ibo_elements = 0, ibo_elements2 = 0; + GLsizei numVertIdxs = numParts * numVertPerPart; + GLsizei numVertIdxs2 = numParts2 * numVertPerPart2; + int i; - if (useWireMode) - { - glPopAttrib(); + if (numVertices > 0 && attribute_v_coord != -1) { + fghGenBuffers(1, &vbo_coords); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]), + vertices, FGH_STATIC_DRAW); + } + + if (numVertices > 0 && attribute_v_normal != -1) { + fghGenBuffers(1, &vbo_normals); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]), + normals, FGH_STATIC_DRAW); + } + + if (vertIdxs != NULL) { + fghGenBuffers(1, &ibo_elements); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]), + vertIdxs, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); } - /* Notes on OpenGL 3 and OpenGL ES2, drawing code for programmable pipeline: - * As above, we'll have to draw face-by-face for wireframes. On - * OpenGL 3 we can probably use glMultiDrawArrays do do this efficiently. - * other complications are VBOs and such... - */ + if (vertIdxs2 != NULL) { + fghGenBuffers(1, &ibo_elements2); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements2); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs2 * sizeof(vertIdxs2[0]), + vertIdxs2, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); + } + + if (vbo_coords) { + fghEnableVertexAttribArray(attribute_v_coord); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghVertexAttribPointer( + attribute_v_coord, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } + + if (vbo_normals) { + fghEnableVertexAttribArray(attribute_v_normal); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghVertexAttribPointer( + attribute_v_normal, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } + + if (!vertIdxs) { + /* Draw per face (TODO: could use glMultiDrawArrays if available) */ + for (i=0; i= 2.0 */ +static void fghDrawGeometrySolid20(GLfloat *vertices, GLfloat *normals, GLsizei numVertices, + GLushort *vertIdxs, GLsizei numParts, GLsizei numVertIdxsPerPart, + GLint attribute_v_coord, GLint attribute_v_normal) +{ + GLuint vbo_coords = 0, vbo_normals = 0, ibo_elements = 0; + GLsizei numVertIdxs = numParts * numVertIdxsPerPart; + int i; + + if (numVertices > 0 && attribute_v_coord != -1) { + fghGenBuffers(1, &vbo_coords); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(vertices[0]), + vertices, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } + + if (numVertices > 0 && attribute_v_normal != -1) { + fghGenBuffers(1, &vbo_normals); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghBufferData(FGH_ARRAY_BUFFER, numVertices * 3 * sizeof(normals[0]), + normals, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + } + + if (vertIdxs != NULL) { + fghGenBuffers(1, &ibo_elements); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + fghBufferData(FGH_ELEMENT_ARRAY_BUFFER, numVertIdxs * sizeof(vertIdxs[0]), + vertIdxs, FGH_STATIC_DRAW); + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, 0); + } + + if (vbo_coords) { + fghEnableVertexAttribArray(attribute_v_coord); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_coords); + fghVertexAttribPointer( + attribute_v_coord, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + }; + + if (vbo_normals) { + fghEnableVertexAttribArray(attribute_v_normal); + fghBindBuffer(FGH_ARRAY_BUFFER, vbo_normals); + fghVertexAttribPointer( + attribute_v_normal, /* attribute */ + 3, /* number of elements per vertex, here (x,y,z) */ + GL_FLOAT, /* the type of each element */ + GL_FALSE, /* take our values as-is */ + 0, /* no extra data between each position */ + 0 /* offset of first element */ + ); + fghBindBuffer(FGH_ARRAY_BUFFER, 0); + }; + + if (vertIdxs == NULL) { + glDrawArrays(GL_TRIANGLES, 0, numVertices); + } else { + fghBindBuffer(FGH_ELEMENT_ARRAY_BUFFER, ibo_elements); + if (numParts>1) { + for (i=0; i 0 ) { - GLdouble local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */ + double local_offset[3] ; /* Use a local variable to avoid buildup of roundoff errors */ unsigned int stride = ipow(4,--numLevels)*TETRAHEDRON_VERT_ELEM_PER_OBJ; scale /= 2.0 ; for ( i = 0 ; i < TETRAHEDRON_NUM_FACES ; i++ ) @@ -642,9 +937,10 @@ static void fghSierpinskiSpongeGenerate ( int numLevels, GLdouble offset[3], GLd } } -/* -- Now the various shapes involving circles -- */ +/* -- Now the various non-polyhedra (shapes involving circles) -- */ /* - * Compute lookup table of cos and sin values forming a cirle + * Compute lookup table of cos and sin values forming a circle + * (or half circle if halfCircle==TRUE) * * Notes: * It is the responsibility of the caller to free these tables @@ -652,25 +948,21 @@ static void fghSierpinskiSpongeGenerate ( int numLevels, GLdouble offset[3], GLd * The last entry is exactly the same as the first * The sign of n can be flipped to get the reverse loop */ -static void fghCircleTable(double **sint,double **cost,const int n) +static void fghCircleTable(GLfloat **sint, GLfloat **cost, const int n, const GLboolean halfCircle) { int i; - + /* Table size, the sign of n flips the circle direction */ - const int size = abs(n); /* Determine the angle between samples */ - - const double angle = 2*M_PI/(double)( ( n == 0 ) ? 1 : n ); + const GLfloat angle = (halfCircle?1:2)*(GLfloat)M_PI/(GLfloat)( ( n == 0 ) ? 1 : n ); /* Allocate memory for n samples, plus duplicate of first entry at the end */ - - *sint = (double *) calloc(sizeof(double), size+1); - *cost = (double *) calloc(sizeof(double), size+1); + *sint = malloc(sizeof(GLfloat) * (size+1)); + *cost = malloc(sizeof(GLfloat) * (size+1)); /* Bail out if memory allocation fails, fgError never returns */ - if (!(*sint) || !(*cost)) { free(*sint); @@ -679,25 +971,381 @@ static void fghCircleTable(double **sint,double **cost,const int n) } /* Compute cos and sin around the circle */ - (*sint)[0] = 0.0; (*cost)[0] = 1.0; for (i=1; i 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateSphere: too many slices or stacks requested, indices will wrap"); + + /* precompute values on unit circle */ + fghCircleTable(&sint1,&cost1,-slices,FALSE); + fghCircleTable(&sint2,&cost2, stacks,TRUE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateSphere"); + } + + /* top */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = radius; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = 1.f; + idx = 3; + + /* each stack */ + for( i=1; i 0 ) ? stacks : 1 ); + const GLfloat rStep = (GLfloat)base / ( ( stacks > 0 ) ? stacks : 1 ); + + /* Scaling factors for vertex normals */ + const GLfloat cosn = (GLfloat) (height / sqrt( height * height + base * base )); + const GLfloat sinn = (GLfloat) (base / sqrt( height * height + base * base )); + + + + /* number of unique vertices */ + if (slices==0 || stacks<1) + { + /* nothing to generate */ + *nVert = 0; + return; + } + *nVert = slices*(stacks+2)+1; /* need an extra stack for closing off bottom with correct normals */ + + if ((*nVert) > 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateCone: too many slices or stacks requested, indices will wrap"); + + /* Pre-computed circle */ + fghCircleTable(&sint,&cost,-slices,FALSE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateCone"); + } + + /* bottom */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = z; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = -1.f; + idx = 3; + /* other on bottom (get normals right) */ + for (j=0; j 0 ) ? stacks : 1 ); + + /* Pre-computed circle */ + GLfloat *sint,*cost; + + /* number of unique vertices */ + if (slices==0 || stacks<1) + { + /* nothing to generate */ + *nVert = 0; + return; + } + *nVert = slices*(stacks+3)+2; /* need two extra stacks for closing off top and bottom with correct normals */ + + if ((*nVert) > 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateCylinder: too many slices or stacks requested, indices will wrap"); + + /* Pre-computed circle */ + fghCircleTable(&sint,&cost,-slices,FALSE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateCylinder"); + } + + z=0; + /* top on Z-axis */ + (*vertices)[0] = 0.f; + (*vertices)[1] = 0.f; + (*vertices)[2] = 0.f; + (*normals )[0] = 0.f; + (*normals )[1] = 0.f; + (*normals )[2] = -1.f; + idx = 3; + /* other on top (get normals right) */ + for (j=0; j 65535) + /* + * limit of glushort, thats 256*256 subdivisions, should be enough in practice. + * But still: + * TODO: must have a better solution than this low limit, at least for architectures where gluint is available + */ + fgWarning("fghGenerateTorus: too many slices or stacks requested, indices will wrap"); + + /* precompute values on unit circle */ + fghCircleTable(&spsi,&cpsi, nRings,FALSE); + fghCircleTable(&sphi,&cphi,-nSides,FALSE); + + /* Allocate vertex and normal buffers, bail out if memory allocation fails */ + *vertices = malloc((*nVert)*3*sizeof(GLfloat)); + *normals = malloc((*nVert)*3*sizeof(GLfloat)); + if (!(*vertices) || !(*normals)) + { + free(*vertices); + free(*normals); + fgError("Failed to allocate memory in fghGenerateTorus"); + } + + for( j=0; j0)?1:0]; - r0 = 0.0; - r1 = sint2[(stacks>0)?1:0]; + /* Generate vertices and normals */ + fghGenerateSphere(radius,slices,stacks,&vertices,&normals,&nVert); + + if (nVert==0) + /* nothing to draw */ + return; - glBegin(GL_TRIANGLE_FAN); - - glNormal3d(0,0,1); - glVertex3d(0,0,radius); - - for (j=slices; j>=0; j--) + if (useWireMode) + { + GLushort *sliceIdx, *stackIdx; + /* First, generate vertex index arrays for drawing with glDrawElements + * We have a bunch of line_loops to draw for each stack, and a + * bunch for each slice. + */ + + sliceIdx = malloc(slices*(stacks+1)*sizeof(GLushort)); + stackIdx = malloc(slices*(stacks-1)*sizeof(GLushort)); + if (!(stackIdx) || !(sliceIdx)) { - glNormal3d(cost1[j]*r1, sint1[j]*r1, z1 ); - glVertex3d(cost1[j]*r1*radius, sint1[j]*r1*radius, z1*radius); + free(stackIdx); + free(sliceIdx); + fgError("Failed to allocate memory in fghSphere"); } - glEnd(); - - /* Cover each stack with a quad strip, except the top and bottom stacks */ - - for( i=1; i 0 ) ? stacks : 1 ); - const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 ); + if (nVert==0) + /* nothing to draw */ + return; - /* Scaling factors for vertex normals */ - - const double cosn = ( height / sqrt ( height * height + base * base )); - const double sinn = ( base / sqrt ( height * height + base * base )); - - /* Pre-computed circle */ - - double *sint,*cost; - - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCone" ); - - fghCircleTable(&sint,&cost,-slices); - - /* Cover the circular base with a triangle fan... */ - - z0 = 0.0; - z1 = zStep; - - r0 = base; - r1 = r0 - rStep; - - glBegin(GL_TRIANGLE_FAN); - - glNormal3d(0.0,0.0,-1.0); - glVertex3d(0.0,0.0, z0 ); - - for (j=0; j<=slices; j++) - glVertex3d(cost[j]*r0, sint[j]*r0, z0); - - glEnd(); - - /* Cover each stack with a quad strip, except the top stack */ - - for( i=0; i 0 ) ? stacks : 1 ); - const double rStep = base / ( ( stacks > 0 ) ? stacks : 1 ); + int i,j,idx, nVert; + GLfloat *vertices, *normals; - /* Scaling factors for vertex normals */ - - const double cosn = ( height / sqrt ( height * height + base * base )); - const double sinn = ( base / sqrt ( height * height + base * base )); - - /* Pre-computed circle */ + /* Generate vertices and normals */ + fghGenerateTorus(dInnerRadius,dOuterRadius,nSides,nRings, &vertices,&normals,&nVert); - double *sint,*cost; + if (nVert==0) + /* nothing to draw */ + return; - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCone" ); + if (useWireMode) + { + GLushort *sideIdx, *ringIdx; + /* First, generate vertex index arrays for drawing with glDrawElements + * We have a bunch of line_loops to draw each side, and a + * bunch for each ring. + */ + + ringIdx = malloc(nRings*nSides*sizeof(GLushort)); + sideIdx = malloc(nSides*nRings*sizeof(GLushort)); + if (!(ringIdx) || !(sideIdx)) + { + free(ringIdx); + free(sideIdx); + fgError("Failed to allocate memory in fghTorus"); + } - fghCircleTable(&sint,&cost,-slices); + /* generate for each ring */ + for( j=0,idx=0; j 0 ) ? stacks : 1 ); +/* + * Draws a solid cone + */ +void FGAPIENTRY glutSolidCone( double base, double height, GLint slices, GLint stacks ) +{ + FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCone" ); + fghCone((GLfloat)base, (GLfloat)height, slices, stacks, FALSE ); +} - /* Pre-computed circle */ +/* + * Draws a wire cone + */ +void FGAPIENTRY glutWireCone( double base, double height, GLint slices, GLint stacks) +{ + FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCone" ); + fghCone((GLfloat)base, (GLfloat)height, slices, stacks, TRUE ); +} - double *sint,*cost; +/* + * Draws a solid cylinder + */ +void FGAPIENTRY glutSolidCylinder(double radius, double height, GLint slices, GLint stacks) +{ FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutSolidCylinder" ); - - fghCircleTable(&sint,&cost,-slices); - - /* Cover the base and top */ - - glBegin(GL_TRIANGLE_FAN); - glNormal3d(0.0, 0.0, -1.0 ); - glVertex3d(0.0, 0.0, 0.0 ); - for (j=0; j<=slices; j++) - glVertex3d(cost[j]*radius, sint[j]*radius, 0.0); - glEnd(); - - glBegin(GL_TRIANGLE_FAN); - glNormal3d(0.0, 0.0, 1.0 ); - glVertex3d(0.0, 0.0, height); - for (j=slices; j>=0; j--) - glVertex3d(cost[j]*radius, sint[j]*radius, height); - glEnd(); - - /* Do the stacks */ - - z0 = 0.0; - z1 = zStep; - - for (i=1; i<=stacks; i++) - { - if (i==stacks) - z1 = height; - - glBegin(GL_QUAD_STRIP); - for (j=0; j<=slices; j++ ) - { - glNormal3d(cost[j], sint[j], 0.0 ); - glVertex3d(cost[j]*radius, sint[j]*radius, z0 ); - glVertex3d(cost[j]*radius, sint[j]*radius, z1 ); - } - glEnd(); - - z0 = z1; z1 += zStep; - } - - /* Release sin and cos tables */ - - free(sint); - free(cost); + fghCylinder((GLfloat)radius, (GLfloat)height, slices, stacks, FALSE ); } /* * Draws a wire cylinder */ -void FGAPIENTRY glutWireCylinder(GLdouble radius, GLdouble height, GLint slices, GLint stacks) +void FGAPIENTRY glutWireCylinder(double radius, double height, GLint slices, GLint stacks) { - int i,j; - - /* Step in z and radius as stacks are drawn. */ - - double z = 0.0; - const double zStep = height / ( ( stacks > 0 ) ? stacks : 1 ); - - /* Pre-computed circle */ - - double *sint,*cost; - FREEGLUT_EXIT_IF_NOT_INITIALISED ( "glutWireCylinder" ); - - fghCircleTable(&sint,&cost,-slices); - - /* Draw the stacks... */ - - for (i=0; i<=stacks; i++) - { - if (i==stacks) - z = height; - - glBegin(GL_LINE_LOOP); - - for( j=0; j