X-Git-Url: http://git.mutantstargoat.com/user/nuclear/?p=antikythera;a=blobdiff_plain;f=src%2Fmachine.cc;h=313540d18f1b60b567a402e4fe8ce9579c394fae;hp=274362a3a60f12e6e66a5e47e918d3c2a282e6ab;hb=080d7a779d43f549fc16c44e709cbf5989180fdf;hpb=2c8e92970f198061a0cefdb59c2d0ec8c58409c9 diff --git a/src/machine.cc b/src/machine.cc index 274362a..313540d 100644 --- a/src/machine.cc +++ b/src/machine.cc @@ -1,6 +1,7 @@ #include #include #include +#include #include #include "machine.h" @@ -29,6 +30,10 @@ Machine::~Machine() void Machine::add_gear(Gear *g) { + if(gearidx.find(g) != gearidx.end()) { + return; // already have this gear + } + gearidx[g] = gears.size(); gears.push_back(g); meshing_valid = false; } @@ -63,34 +68,34 @@ void Machine::calc_meshing() visited = new bool[ngears]; } - // we're going to need the inverse of each gear's matrix, so let's cache it here - Mat4 *inv_xform = (Mat4*)alloca(ngears * sizeof *inv_xform); + // we're going to need the planar position of each gear on its plane, so let's cache it + Vec3 *ppos = (Vec3*)alloca(ngears * sizeof *ppos); for(int i=0; iget_dir_matrix()); + ppos[i] = gears[i]->get_position(); } for(int i=0; iget_super() == gears[j] || gears[j]->get_super() == gears[i]) { + // don't attempt meshing if it's the same gear, or they are attached to each other + continue; + } if(1.0 - fabs(dot(gears[i]->axis, gears[j]->axis)) < 1e-5) { // co-planar, just check Z range after inverse-transforming to the XY plane - Vec3 pos_i = inv_xform[i] * gears[i]->get_position(); - Vec3 pos_j = inv_xform[j] * gears[j]->get_position(); - - if(fabs(pos_i.z - pos_j.z) > (gears[i]->thickness + gears[j]->thickness) / 2.0) { + if(fabs(ppos[i].z - ppos[j].z) > (gears[i]->thickness + gears[j]->thickness) / 2.0) { continue; } // Z interval match, check distance - float dsq = length_sq(pos_i.xy() - pos_j.xy()); + float dsq = length_sq(ppos[i].xy() - ppos[j].xy()); float outer_rad_sum = gears[i]->radius + gears[j]->radius; float inner_rad_sum = outer_rad_sum - gears[i]->teeth_length - gears[j]->teeth_length; if(dsq <= outer_rad_sum * outer_rad_sum && dsq >= inner_rad_sum * inner_rad_sum) { - printf("connecting co-planar gears %d - %d\n", i, j); + //printf("connecting co-planar gears %d - %d\n", i, j); meshing[i][j] = meshing[j][i] = true; } @@ -107,42 +112,81 @@ void Machine::calc_meshing() // fix the initial angles so that teeth mesh as best as possible // should work in one pass as long as the gear train is not impossible for(int i=0; iangle + gears[i]->get_angular_pitch() / 2.0; + float snap = rnd - fmod(rnd, gears[i]->get_angular_pitch()); + gears[i]->set_angle(snap);*/ + gears[i]->set_angular_offset(0); + } + + for(int i=0; iinit_angle / gears[i]->get_angular_pitch() + 1.0, 1.0); - float frac_j = fmod(gears[j]->init_angle / gears[j]->get_angular_pitch() + 1.0, 1.0); + Vec2 dir = normalize(ppos[j].xy() - ppos[i].xy()); + float rel_angle = atan2(dir.y, dir.x); + + float frac_i = fmod((gears[i]->init_angle + rel_angle) / gears[i]->get_angular_pitch() + 100.0, 1.0); + float frac_j = fmod((gears[j]->init_angle - rel_angle) / gears[j]->get_angular_pitch() + 100.0, 1.0); + assert(frac_i >= 0.0 && frac_j >= 0.0); float delta = frac_j - frac_i; float correction = 0.5 - delta; - gears[j]->init_angle += correction * gears[j]->get_angular_pitch(); + float prev_offs = gears[j]->get_angular_offset(); + gears[j]->set_angular_offset(prev_offs + correction * gears[j]->get_angular_pitch()); } } } + + /* + printf("meshing graph\n"); + for(int i=0; iangle) > 0.25 / gears[idx]->nteeth) { + if(delta_angle(angle, gear->angle) > 0.25 / gear->nteeth) { fprintf(stderr, "warning: trying to transmit different values to gear %s (%d)\n", - gears[idx]->name.c_str(), idx); + gear->name.c_str(), idx); + gear->angle = 0; } return; } - gears[idx]->set_angle(angle); + gear->set_angle(angle); visited[idx] = true; + // propagate to meshing gears (depth-first) int ngears = (int)gears.size(); for(int i=0; inteeth / (float)gears[i]->nteeth; + float ratio = -(float)gear->nteeth / (float)gears[i]->nteeth; update_gear(i, angle * ratio); } + + // propagate to rigidly attached gears + if(gear->supergear) { + int supidx = gearidx[gear->supergear]; + update_gear(supidx, angle); + } + + int nsub = (int)gear->subgears.size(); + for(int i=0; isubgears[i]]; + update_gear(subidx, angle); + } } void Machine::update(float dt) @@ -170,6 +214,29 @@ void Machine::draw() const } } +Gear *Machine::intersect_gear(const Ray &ray, HitPoint *hitp) const +{ + Gear *res = 0; + HitPoint nearest; + nearest.dist = FLT_MAX; + + for(size_t i=0; iget_global_position(); + float rad = gears[i]->radius; + + Plane plane = Plane(pos, gears[i]->axis); + + HitPoint hit; + if(plane.intersect(ray, &hit) && hit.dist < nearest.dist && + length_sq(hit.pos - pos) <= rad * rad) { + nearest = hit; + res = gears[i]; + } + } + + if(hitp) *hitp = nearest; + return res; +} static float delta_angle(float a, float b) {