/* Copyright (C) 2018 John Tsiombikas This program is free software. Feel free to use, modify, and/or redistribute it under the terms of the MIT/X11 license. See LICENSE for details. If you intend to redistribute parts of the code without the LICENSE file replace this paragraph with the full contents of the LICENSE file. */ static inline void cgm_qcons(cgm_quat *q, float x, float y, float z, float w) { q->x = x; q->y = y; q->z = z; q->w = w; } static inline void cgm_qneg(cgm_quat *q) { q->x = -q->x; q->y = -q->y; q->z = -q->z; q->w = -q->w; } static inline void cgm_qadd(cgm_quat *a, const cgm_quat *b) { a->x += b->x; a->y += b->y; a->z += b->z; a->w += b->w; } static inline void cgm_qsub(cgm_quat *a, const cgm_quat *b) { a->x -= b->x; a->y -= b->y; a->z -= b->z; a->w -= b->w; } static inline void cgm_qmul(cgm_quat *a, const cgm_quat *b) { float x, y, z, dot; cgm_vec3 cross; dot = a->x * b->x + a->y * b->y + a->z * b->z; cgm_vcross(&cross, (cgm_vec3*)a, (cgm_vec3*)b); x = a->w * b->x + b->w * a->x + cross.x; y = a->w * b->y + b->w * a->y + cross.y; z = a->w * b->z + b->w * a->z + cross.z; a->w = a->w * b->w - dot; a->x = x; a->y = y; a->z = z; } static inline float cgm_qlength(const cgm_quat *q) { return sqrt(q->x * q->x + q->y * q->y + q->z * q->z + q->w * q->w); } static inline float cgm_qlength_sq(const cgm_quat *q) { return q->x * q->x + q->y * q->y + q->z * q->z + q->w * q->w; } static inline void cgm_qnormalize(cgm_quat *q) { float len = cgm_qlength(q); if(len != 0.0f) { float s = 1.0f / len; q->x *= s; q->y *= s; q->z *= s; q->w *= s; } } static inline void cgm_qconjugate(cgm_quat *q) { q->x = -q->x; q->y = -q->y; q->z = -q->z; } static inline void cgm_qinvert(cgm_quat *q) { float len_sq = cgm_qlength_sq(q); cgm_qconjugate(q); if(len_sq != 0.0f) { float s = 1.0f / len_sq; q->x *= s; q->y *= s; q->z *= s; q->w *= s; } } static inline void cgm_qrotation(cgm_quat *q, const cgm_vec3 *axis, float angle) { float hangle = angle * 0.5f; float sin_ha = sin(hangle); q->w = cos(hangle); q->x = axis->x * sin_ha; q->y = axis->y * sin_ha; q->z = axis->z * sin_ha; } static inline void cgm_qrotate(cgm_quat *q, const cgm_vec3 *axis, float angle) { cgm_quat qrot; cgm_qrotation(&qrot, axis, angle); cgm_qmul(q, &qrot); } static inline void cgm_qslerp(cgm_quat *res, const cgm_quat *quat1, const cgm_quat *q2, float t) { float angle, dot, a, b, sin_angle; cgm_quat q1 = *quat1; dot = quat1->x * q2->x + quat1->y * q2->y + quat1->z * q2->z + quat1->w * q2->w; if(dot < 0.0f) { /* make sure we inteprolate across the shortest arc */ cgm_qneg(&q1); dot = -dot; } /* clamp dot to [-1, 1] in order to avoid domain errors in acos due to * floating point imprecisions */ if(dot < -1.0f) dot = -1.0f; if(dot > 1.0f) dot = 1.0f; angle = acos(dot); sin_angle = sin(angle); if(sin_angle == 0.0f) { /* use linear interpolation to avoid div/zero */ a = 1.0f; b = t; } else { a = sin((1.0f - t) * angle) / sin_angle; b = sin(t * angle) / sin_angle; } res->x = q1.x * a + q2->x * b; res->y = q1.y * a + q2->y * b; res->z = q1.z * a + q2->z * b; res->w = q1.w * a + q2->w * b; } static inline void cgm_qlerp(cgm_quat *res, const cgm_quat *a, const cgm_quat *b, float t) { res->x = a->x + (b->x - a->x) * t; res->y = a->y + (b->y - a->y) * t; res->z = a->z + (b->z - a->z) * t; res->w = a->w + (b->w - a->w) * t; }