4 * Copyright (C) 1995-1997, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains Huffman entropy encoding routines for progressive JPEG.
10 * We do not support output suspension in this module, since the library
11 * currently does not allow multiple-scan files to be written with output
15 #define JPEG_INTERNALS
18 #include "jchuff.h" /* Declarations shared with jchuff.c */
20 #ifdef C_PROGRESSIVE_SUPPORTED
22 /* Expanded entropy encoder object for progressive Huffman encoding. */
25 struct jpeg_entropy_encoder pub; /* public fields */
27 /* Mode flag: TRUE for optimization, FALSE for actual data output */
28 boolean gather_statistics;
30 /* Bit-level coding status.
31 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
33 JOCTET * next_output_byte; /* => next byte to write in buffer */
34 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
35 INT32 put_buffer; /* current bit-accumulation buffer */
36 int put_bits; /* # of bits now in it */
37 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
39 /* Coding status for DC components */
40 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
42 /* Coding status for AC components */
43 int ac_tbl_no; /* the table number of the single component */
44 unsigned int EOBRUN; /* run length of EOBs */
45 unsigned int BE; /* # of buffered correction bits before MCU */
46 char * bit_buffer; /* buffer for correction bits (1 per char) */
47 /* packing correction bits tightly would save some space but cost time... */
49 unsigned int restarts_to_go; /* MCUs left in this restart interval */
50 int next_restart_num; /* next restart number to write (0-7) */
52 /* Pointers to derived tables (these workspaces have image lifespan).
53 * Since any one scan codes only DC or only AC, we only need one set
54 * of tables, not one for DC and one for AC.
56 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
58 /* Statistics tables for optimization; again, one set is enough */
59 long * count_ptrs[NUM_HUFF_TBLS];
60 } phuff_entropy_encoder;
62 typedef phuff_entropy_encoder * phuff_entropy_ptr;
64 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
65 * buffer can hold. Larger sizes may slightly improve compression, but
66 * 1000 is already well into the realm of overkill.
67 * The minimum safe size is 64 bits.
70 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
72 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
73 * We assume that int right shift is unsigned if INT32 right shift is,
74 * which should be safe.
77 #ifdef RIGHT_SHIFT_IS_UNSIGNED
78 #define ISHIFT_TEMPS int ishift_temp;
79 #define IRIGHT_SHIFT(x,shft) \
80 ((ishift_temp = (x)) < 0 ? \
81 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
82 (ishift_temp >> (shft)))
85 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
88 /* Forward declarations */
89 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
90 JBLOCKROW *MCU_data));
91 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
92 JBLOCKROW *MCU_data));
93 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
94 JBLOCKROW *MCU_data));
95 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
96 JBLOCKROW *MCU_data));
97 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
98 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
102 * Initialize for a Huffman-compressed scan using progressive JPEG.
106 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
108 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
111 jpeg_component_info * compptr;
113 entropy->cinfo = cinfo;
114 entropy->gather_statistics = gather_statistics;
116 is_DC_band = (cinfo->Ss == 0);
118 /* We assume jcmaster.c already validated the scan parameters. */
120 /* Select execution routines */
121 if (cinfo->Ah == 0) {
123 entropy->pub.encode_mcu = encode_mcu_DC_first;
125 entropy->pub.encode_mcu = encode_mcu_AC_first;
128 entropy->pub.encode_mcu = encode_mcu_DC_refine;
130 entropy->pub.encode_mcu = encode_mcu_AC_refine;
131 /* AC refinement needs a correction bit buffer */
132 if (entropy->bit_buffer == NULL)
133 entropy->bit_buffer = (char *)
134 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
135 MAX_CORR_BITS * SIZEOF(char));
138 if (gather_statistics)
139 entropy->pub.finish_pass = finish_pass_gather_phuff;
141 entropy->pub.finish_pass = finish_pass_phuff;
143 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
144 * for AC coefficients.
146 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
147 compptr = cinfo->cur_comp_info[ci];
148 /* Initialize DC predictions to 0 */
149 entropy->last_dc_val[ci] = 0;
150 /* Get table index */
152 if (cinfo->Ah != 0) /* DC refinement needs no table */
154 tbl = compptr->dc_tbl_no;
156 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
158 if (gather_statistics) {
159 /* Check for invalid table index */
160 /* (make_c_derived_tbl does this in the other path) */
161 if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
162 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
163 /* Allocate and zero the statistics tables */
164 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
165 if (entropy->count_ptrs[tbl] == NULL)
166 entropy->count_ptrs[tbl] = (long *)
167 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
169 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
171 /* Compute derived values for Huffman table */
172 /* We may do this more than once for a table, but it's not expensive */
173 jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
174 & entropy->derived_tbls[tbl]);
178 /* Initialize AC stuff */
182 /* Initialize bit buffer to empty */
183 entropy->put_buffer = 0;
184 entropy->put_bits = 0;
186 /* Initialize restart stuff */
187 entropy->restarts_to_go = cinfo->restart_interval;
188 entropy->next_restart_num = 0;
192 /* Outputting bytes to the file.
193 * NB: these must be called only when actually outputting,
194 * that is, entropy->gather_statistics == FALSE.
198 #define emit_byte(entropy,val) \
199 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
200 if (--(entropy)->free_in_buffer == 0) \
201 dump_buffer(entropy); }
205 dump_buffer (phuff_entropy_ptr entropy)
206 /* Empty the output buffer; we do not support suspension in this module. */
208 struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
210 if (! (*dest->empty_output_buffer) (entropy->cinfo))
211 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
212 /* After a successful buffer dump, must reset buffer pointers */
213 entropy->next_output_byte = dest->next_output_byte;
214 entropy->free_in_buffer = dest->free_in_buffer;
218 /* Outputting bits to the file */
220 /* Only the right 24 bits of put_buffer are used; the valid bits are
221 * left-justified in this part. At most 16 bits can be passed to emit_bits
222 * in one call, and we never retain more than 7 bits in put_buffer
223 * between calls, so 24 bits are sufficient.
228 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
229 /* Emit some bits, unless we are in gather mode */
231 /* This routine is heavily used, so it's worth coding tightly. */
232 register INT32 put_buffer = (INT32) code;
233 register int put_bits = entropy->put_bits;
235 /* if size is 0, caller used an invalid Huffman table entry */
237 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
239 if (entropy->gather_statistics)
240 return; /* do nothing if we're only getting stats */
242 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
244 put_bits += size; /* new number of bits in buffer */
246 put_buffer <<= 24 - put_bits; /* align incoming bits */
248 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
250 while (put_bits >= 8) {
251 int c = (int) ((put_buffer >> 16) & 0xFF);
253 emit_byte(entropy, c);
254 if (c == 0xFF) { /* need to stuff a zero byte? */
255 emit_byte(entropy, 0);
261 entropy->put_buffer = put_buffer; /* update variables */
262 entropy->put_bits = put_bits;
267 flush_bits (phuff_entropy_ptr entropy)
269 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
270 entropy->put_buffer = 0; /* and reset bit-buffer to empty */
271 entropy->put_bits = 0;
276 * Emit (or just count) a Huffman symbol.
281 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
283 if (entropy->gather_statistics)
284 entropy->count_ptrs[tbl_no][symbol]++;
286 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
287 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
293 * Emit bits from a correction bit buffer.
297 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
300 if (entropy->gather_statistics)
301 return; /* no real work */
304 emit_bits(entropy, (unsigned int) (*bufstart), 1);
312 * Emit any pending EOBRUN symbol.
316 emit_eobrun (phuff_entropy_ptr entropy)
318 register int temp, nbits;
320 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
321 temp = entropy->EOBRUN;
325 /* safety check: shouldn't happen given limited correction-bit buffer */
327 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
329 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
331 emit_bits(entropy, entropy->EOBRUN, nbits);
335 /* Emit any buffered correction bits */
336 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
343 * Emit a restart marker & resynchronize predictions.
347 emit_restart (phuff_entropy_ptr entropy, int restart_num)
351 emit_eobrun(entropy);
353 if (! entropy->gather_statistics) {
355 emit_byte(entropy, 0xFF);
356 emit_byte(entropy, JPEG_RST0 + restart_num);
359 if (entropy->cinfo->Ss == 0) {
360 /* Re-initialize DC predictions to 0 */
361 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
362 entropy->last_dc_val[ci] = 0;
364 /* Re-initialize all AC-related fields to 0 */
372 * MCU encoding for DC initial scan (either spectral selection,
373 * or first pass of successive approximation).
377 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
379 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
380 register int temp, temp2;
385 jpeg_component_info * compptr;
388 entropy->next_output_byte = cinfo->dest->next_output_byte;
389 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
391 /* Emit restart marker if needed */
392 if (cinfo->restart_interval)
393 if (entropy->restarts_to_go == 0)
394 emit_restart(entropy, entropy->next_restart_num);
396 /* Encode the MCU data blocks */
397 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
398 block = MCU_data[blkn];
399 ci = cinfo->MCU_membership[blkn];
400 compptr = cinfo->cur_comp_info[ci];
402 /* Compute the DC value after the required point transform by Al.
403 * This is simply an arithmetic right shift.
405 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
407 /* DC differences are figured on the point-transformed values. */
408 temp = temp2 - entropy->last_dc_val[ci];
409 entropy->last_dc_val[ci] = temp2;
411 /* Encode the DC coefficient difference per section G.1.2.1 */
414 temp = -temp; /* temp is abs value of input */
415 /* For a negative input, want temp2 = bitwise complement of abs(input) */
416 /* This code assumes we are on a two's complement machine */
420 /* Find the number of bits needed for the magnitude of the coefficient */
426 /* Check for out-of-range coefficient values.
427 * Since we're encoding a difference, the range limit is twice as much.
429 if (nbits > MAX_COEF_BITS+1)
430 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
432 /* Count/emit the Huffman-coded symbol for the number of bits */
433 emit_symbol(entropy, compptr->dc_tbl_no, nbits);
435 /* Emit that number of bits of the value, if positive, */
436 /* or the complement of its magnitude, if negative. */
437 if (nbits) /* emit_bits rejects calls with size 0 */
438 emit_bits(entropy, (unsigned int) temp2, nbits);
441 cinfo->dest->next_output_byte = entropy->next_output_byte;
442 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
444 /* Update restart-interval state too */
445 if (cinfo->restart_interval) {
446 if (entropy->restarts_to_go == 0) {
447 entropy->restarts_to_go = cinfo->restart_interval;
448 entropy->next_restart_num++;
449 entropy->next_restart_num &= 7;
451 entropy->restarts_to_go--;
459 * MCU encoding for AC initial scan (either spectral selection,
460 * or first pass of successive approximation).
464 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
466 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
467 register int temp, temp2;
474 entropy->next_output_byte = cinfo->dest->next_output_byte;
475 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
477 /* Emit restart marker if needed */
478 if (cinfo->restart_interval)
479 if (entropy->restarts_to_go == 0)
480 emit_restart(entropy, entropy->next_restart_num);
482 /* Encode the MCU data block */
485 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
487 r = 0; /* r = run length of zeros */
489 for (k = cinfo->Ss; k <= Se; k++) {
490 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
494 /* We must apply the point transform by Al. For AC coefficients this
495 * is an integer division with rounding towards 0. To do this portably
496 * in C, we shift after obtaining the absolute value; so the code is
497 * interwoven with finding the abs value (temp) and output bits (temp2).
500 temp = -temp; /* temp is abs value of input */
501 temp >>= Al; /* apply the point transform */
502 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
505 temp >>= Al; /* apply the point transform */
508 /* Watch out for case that nonzero coef is zero after point transform */
514 /* Emit any pending EOBRUN */
515 if (entropy->EOBRUN > 0)
516 emit_eobrun(entropy);
517 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
519 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
523 /* Find the number of bits needed for the magnitude of the coefficient */
524 nbits = 1; /* there must be at least one 1 bit */
527 /* Check for out-of-range coefficient values */
528 if (nbits > MAX_COEF_BITS)
529 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
531 /* Count/emit Huffman symbol for run length / number of bits */
532 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
534 /* Emit that number of bits of the value, if positive, */
535 /* or the complement of its magnitude, if negative. */
536 emit_bits(entropy, (unsigned int) temp2, nbits);
538 r = 0; /* reset zero run length */
541 if (r > 0) { /* If there are trailing zeroes, */
542 entropy->EOBRUN++; /* count an EOB */
543 if (entropy->EOBRUN == 0x7FFF)
544 emit_eobrun(entropy); /* force it out to avoid overflow */
547 cinfo->dest->next_output_byte = entropy->next_output_byte;
548 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
550 /* Update restart-interval state too */
551 if (cinfo->restart_interval) {
552 if (entropy->restarts_to_go == 0) {
553 entropy->restarts_to_go = cinfo->restart_interval;
554 entropy->next_restart_num++;
555 entropy->next_restart_num &= 7;
557 entropy->restarts_to_go--;
565 * MCU encoding for DC successive approximation refinement scan.
566 * Note: we assume such scans can be multi-component, although the spec
567 * is not very clear on the point.
571 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
573 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
579 entropy->next_output_byte = cinfo->dest->next_output_byte;
580 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
582 /* Emit restart marker if needed */
583 if (cinfo->restart_interval)
584 if (entropy->restarts_to_go == 0)
585 emit_restart(entropy, entropy->next_restart_num);
587 /* Encode the MCU data blocks */
588 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
589 block = MCU_data[blkn];
591 /* We simply emit the Al'th bit of the DC coefficient value. */
593 emit_bits(entropy, (unsigned int) (temp >> Al), 1);
596 cinfo->dest->next_output_byte = entropy->next_output_byte;
597 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
599 /* Update restart-interval state too */
600 if (cinfo->restart_interval) {
601 if (entropy->restarts_to_go == 0) {
602 entropy->restarts_to_go = cinfo->restart_interval;
603 entropy->next_restart_num++;
604 entropy->next_restart_num &= 7;
606 entropy->restarts_to_go--;
614 * MCU encoding for AC successive approximation refinement scan.
618 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
620 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
629 int absvalues[DCTSIZE2];
631 entropy->next_output_byte = cinfo->dest->next_output_byte;
632 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
634 /* Emit restart marker if needed */
635 if (cinfo->restart_interval)
636 if (entropy->restarts_to_go == 0)
637 emit_restart(entropy, entropy->next_restart_num);
639 /* Encode the MCU data block */
642 /* It is convenient to make a pre-pass to determine the transformed
643 * coefficients' absolute values and the EOB position.
646 for (k = cinfo->Ss; k <= Se; k++) {
647 temp = (*block)[jpeg_natural_order[k]];
648 /* We must apply the point transform by Al. For AC coefficients this
649 * is an integer division with rounding towards 0. To do this portably
650 * in C, we shift after obtaining the absolute value.
653 temp = -temp; /* temp is abs value of input */
654 temp >>= Al; /* apply the point transform */
655 absvalues[k] = temp; /* save abs value for main pass */
657 EOB = k; /* EOB = index of last newly-nonzero coef */
660 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
662 r = 0; /* r = run length of zeros */
663 BR = 0; /* BR = count of buffered bits added now */
664 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
666 for (k = cinfo->Ss; k <= Se; k++) {
667 if ((temp = absvalues[k]) == 0) {
672 /* Emit any required ZRLs, but not if they can be folded into EOB */
673 while (r > 15 && k <= EOB) {
674 /* emit any pending EOBRUN and the BE correction bits */
675 emit_eobrun(entropy);
677 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
679 /* Emit buffered correction bits that must be associated with ZRL */
680 emit_buffered_bits(entropy, BR_buffer, BR);
681 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
685 /* If the coef was previously nonzero, it only needs a correction bit.
686 * NOTE: a straight translation of the spec's figure G.7 would suggest
687 * that we also need to test r > 15. But if r > 15, we can only get here
688 * if k > EOB, which implies that this coefficient is not 1.
691 /* The correction bit is the next bit of the absolute value. */
692 BR_buffer[BR++] = (char) (temp & 1);
696 /* Emit any pending EOBRUN and the BE correction bits */
697 emit_eobrun(entropy);
699 /* Count/emit Huffman symbol for run length / number of bits */
700 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
702 /* Emit output bit for newly-nonzero coef */
703 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
704 emit_bits(entropy, (unsigned int) temp, 1);
706 /* Emit buffered correction bits that must be associated with this code */
707 emit_buffered_bits(entropy, BR_buffer, BR);
708 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
710 r = 0; /* reset zero run length */
713 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
714 entropy->EOBRUN++; /* count an EOB */
715 entropy->BE += BR; /* concat my correction bits to older ones */
716 /* We force out the EOB if we risk either:
717 * 1. overflow of the EOB counter;
718 * 2. overflow of the correction bit buffer during the next MCU.
720 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
721 emit_eobrun(entropy);
724 cinfo->dest->next_output_byte = entropy->next_output_byte;
725 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
727 /* Update restart-interval state too */
728 if (cinfo->restart_interval) {
729 if (entropy->restarts_to_go == 0) {
730 entropy->restarts_to_go = cinfo->restart_interval;
731 entropy->next_restart_num++;
732 entropy->next_restart_num &= 7;
734 entropy->restarts_to_go--;
742 * Finish up at the end of a Huffman-compressed progressive scan.
746 finish_pass_phuff (j_compress_ptr cinfo)
748 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
750 entropy->next_output_byte = cinfo->dest->next_output_byte;
751 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
753 /* Flush out any buffered data */
754 emit_eobrun(entropy);
757 cinfo->dest->next_output_byte = entropy->next_output_byte;
758 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
763 * Finish up a statistics-gathering pass and create the new Huffman tables.
767 finish_pass_gather_phuff (j_compress_ptr cinfo)
769 phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy;
772 jpeg_component_info * compptr;
774 boolean did[NUM_HUFF_TBLS];
776 /* Flush out buffered data (all we care about is counting the EOB symbol) */
777 emit_eobrun(entropy);
779 is_DC_band = (cinfo->Ss == 0);
781 /* It's important not to apply jpeg_gen_optimal_table more than once
782 * per table, because it clobbers the input frequency counts!
784 MEMZERO(did, SIZEOF(did));
786 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
787 compptr = cinfo->cur_comp_info[ci];
789 if (cinfo->Ah != 0) /* DC refinement needs no table */
791 tbl = compptr->dc_tbl_no;
793 tbl = compptr->ac_tbl_no;
797 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
799 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
800 if (*htblptr == NULL)
801 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
802 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
810 * Module initialization routine for progressive Huffman entropy encoding.
814 jinit_phuff_encoder (j_compress_ptr cinfo)
816 phuff_entropy_ptr entropy;
819 entropy = (phuff_entropy_ptr)
820 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
821 SIZEOF(phuff_entropy_encoder));
822 cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
823 entropy->pub.start_pass = start_pass_phuff;
825 /* Mark tables unallocated */
826 for (i = 0; i < NUM_HUFF_TBLS; i++) {
827 entropy->derived_tbls[i] = NULL;
828 entropy->count_ptrs[i] = NULL;
830 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
833 #endif /* C_PROGRESSIVE_SUPPORTED */