initial import
[dosrtxon] / libs / imago / jpeglib / jdhuff.c
1 /*
2  * jdhuff.c
3  *
4  * Copyright (C) 1991-1997, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains Huffman entropy decoding routines.
9  *
10  * Much of the complexity here has to do with supporting input suspension.
11  * If the data source module demands suspension, we want to be able to back
12  * up to the start of the current MCU.  To do this, we copy state variables
13  * into local working storage, and update them back to the permanent
14  * storage only upon successful completion of an MCU.
15  */
16
17 #define JPEG_INTERNALS
18 #include "jinclude.h"
19 #include "jpeglib.h"
20 #include "jdhuff.h"             /* Declarations shared with jdphuff.c */
21
22
23 /*
24  * Expanded entropy decoder object for Huffman decoding.
25  *
26  * The savable_state subrecord contains fields that change within an MCU,
27  * but must not be updated permanently until we complete the MCU.
28  */
29
30 typedef struct {
31   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
32 } savable_state;
33
34 /* This macro is to work around compilers with missing or broken
35  * structure assignment.  You'll need to fix this code if you have
36  * such a compiler and you change MAX_COMPS_IN_SCAN.
37  */
38
39 #ifndef NO_STRUCT_ASSIGN
40 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
41 #else
42 #if MAX_COMPS_IN_SCAN == 4
43 #define ASSIGN_STATE(dest,src)  \
44         ((dest).last_dc_val[0] = (src).last_dc_val[0], \
45          (dest).last_dc_val[1] = (src).last_dc_val[1], \
46          (dest).last_dc_val[2] = (src).last_dc_val[2], \
47          (dest).last_dc_val[3] = (src).last_dc_val[3])
48 #endif
49 #endif
50
51
52 typedef struct {
53   struct jpeg_entropy_decoder pub; /* public fields */
54
55   /* These fields are loaded into local variables at start of each MCU.
56    * In case of suspension, we exit WITHOUT updating them.
57    */
58   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
59   savable_state saved;          /* Other state at start of MCU */
60
61   /* These fields are NOT loaded into local working state. */
62   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
63
64   /* Pointers to derived tables (these workspaces have image lifespan) */
65   d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
66   d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
67
68   /* Precalculated info set up by start_pass for use in decode_mcu: */
69
70   /* Pointers to derived tables to be used for each block within an MCU */
71   d_derived_tbl * dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
72   d_derived_tbl * ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
73   /* Whether we care about the DC and AC coefficient values for each block */
74   boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
75   boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
76 } huff_entropy_decoder;
77
78 typedef huff_entropy_decoder * huff_entropy_ptr;
79
80
81 /*
82  * Initialize for a Huffman-compressed scan.
83  */
84
85 METHODDEF(void)
86 start_pass_huff_decoder (j_decompress_ptr cinfo)
87 {
88   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
89   int ci, blkn, dctbl, actbl;
90   jpeg_component_info * compptr;
91
92   /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
93    * This ought to be an error condition, but we make it a warning because
94    * there are some baseline files out there with all zeroes in these bytes.
95    */
96   if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
97       cinfo->Ah != 0 || cinfo->Al != 0)
98     WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
99
100   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
101     compptr = cinfo->cur_comp_info[ci];
102     dctbl = compptr->dc_tbl_no;
103     actbl = compptr->ac_tbl_no;
104     /* Compute derived values for Huffman tables */
105     /* We may do this more than once for a table, but it's not expensive */
106     jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
107                             & entropy->dc_derived_tbls[dctbl]);
108     jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
109                             & entropy->ac_derived_tbls[actbl]);
110     /* Initialize DC predictions to 0 */
111     entropy->saved.last_dc_val[ci] = 0;
112   }
113
114   /* Precalculate decoding info for each block in an MCU of this scan */
115   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
116     ci = cinfo->MCU_membership[blkn];
117     compptr = cinfo->cur_comp_info[ci];
118     /* Precalculate which table to use for each block */
119     entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
120     entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
121     /* Decide whether we really care about the coefficient values */
122     if (compptr->component_needed) {
123       entropy->dc_needed[blkn] = TRUE;
124       /* we don't need the ACs if producing a 1/8th-size image */
125       entropy->ac_needed[blkn] = (compptr->DCT_scaled_size > 1);
126     } else {
127       entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
128     }
129   }
130
131   /* Initialize bitread state variables */
132   entropy->bitstate.bits_left = 0;
133   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
134   entropy->pub.insufficient_data = FALSE;
135
136   /* Initialize restart counter */
137   entropy->restarts_to_go = cinfo->restart_interval;
138 }
139
140
141 /*
142  * Compute the derived values for a Huffman table.
143  * This routine also performs some validation checks on the table.
144  *
145  * Note this is also used by jdphuff.c.
146  */
147
148 GLOBAL(void)
149 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, boolean isDC, int tblno,
150                          d_derived_tbl ** pdtbl)
151 {
152   JHUFF_TBL *htbl;
153   d_derived_tbl *dtbl;
154   int p, i, l, si, numsymbols;
155   int lookbits, ctr;
156   char huffsize[257];
157   unsigned int huffcode[257];
158   unsigned int code;
159
160   /* Note that huffsize[] and huffcode[] are filled in code-length order,
161    * paralleling the order of the symbols themselves in htbl->huffval[].
162    */
163
164   /* Find the input Huffman table */
165   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
166     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
167   htbl =
168     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
169   if (htbl == NULL)
170     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
171
172   /* Allocate a workspace if we haven't already done so. */
173   if (*pdtbl == NULL)
174     *pdtbl = (d_derived_tbl *)
175       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
176                                   SIZEOF(d_derived_tbl));
177   dtbl = *pdtbl;
178   dtbl->pub = htbl;             /* fill in back link */
179   
180   /* Figure C.1: make table of Huffman code length for each symbol */
181
182   p = 0;
183   for (l = 1; l <= 16; l++) {
184     i = (int) htbl->bits[l];
185     if (i < 0 || p + i > 256)   /* protect against table overrun */
186       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
187     while (i--)
188       huffsize[p++] = (char) l;
189   }
190   huffsize[p] = 0;
191   numsymbols = p;
192   
193   /* Figure C.2: generate the codes themselves */
194   /* We also validate that the counts represent a legal Huffman code tree. */
195   
196   code = 0;
197   si = huffsize[0];
198   p = 0;
199   while (huffsize[p]) {
200     while (((int) huffsize[p]) == si) {
201       huffcode[p++] = code;
202       code++;
203     }
204     /* code is now 1 more than the last code used for codelength si; but
205      * it must still fit in si bits, since no code is allowed to be all ones.
206      */
207     if (((INT32) code) >= (((INT32) 1) << si))
208       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
209     code <<= 1;
210     si++;
211   }
212
213   /* Figure F.15: generate decoding tables for bit-sequential decoding */
214
215   p = 0;
216   for (l = 1; l <= 16; l++) {
217     if (htbl->bits[l]) {
218       /* valoffset[l] = huffval[] index of 1st symbol of code length l,
219        * minus the minimum code of length l
220        */
221       dtbl->valoffset[l] = (INT32) p - (INT32) huffcode[p];
222       p += htbl->bits[l];
223       dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
224     } else {
225       dtbl->maxcode[l] = -1;    /* -1 if no codes of this length */
226     }
227   }
228   dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
229
230   /* Compute lookahead tables to speed up decoding.
231    * First we set all the table entries to 0, indicating "too long";
232    * then we iterate through the Huffman codes that are short enough and
233    * fill in all the entries that correspond to bit sequences starting
234    * with that code.
235    */
236
237   MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
238
239   p = 0;
240   for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
241     for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
242       /* l = current code's length, p = its index in huffcode[] & huffval[]. */
243       /* Generate left-justified code followed by all possible bit sequences */
244       lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
245       for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
246         dtbl->look_nbits[lookbits] = l;
247         dtbl->look_sym[lookbits] = htbl->huffval[p];
248         lookbits++;
249       }
250     }
251   }
252
253   /* Validate symbols as being reasonable.
254    * For AC tables, we make no check, but accept all byte values 0..255.
255    * For DC tables, we require the symbols to be in range 0..15.
256    * (Tighter bounds could be applied depending on the data depth and mode,
257    * but this is sufficient to ensure safe decoding.)
258    */
259   if (isDC) {
260     for (i = 0; i < numsymbols; i++) {
261       int sym = htbl->huffval[i];
262       if (sym < 0 || sym > 15)
263         ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
264     }
265   }
266 }
267
268
269 /*
270  * Out-of-line code for bit fetching (shared with jdphuff.c).
271  * See jdhuff.h for info about usage.
272  * Note: current values of get_buffer and bits_left are passed as parameters,
273  * but are returned in the corresponding fields of the state struct.
274  *
275  * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
276  * of get_buffer to be used.  (On machines with wider words, an even larger
277  * buffer could be used.)  However, on some machines 32-bit shifts are
278  * quite slow and take time proportional to the number of places shifted.
279  * (This is true with most PC compilers, for instance.)  In this case it may
280  * be a win to set MIN_GET_BITS to the minimum value of 15.  This reduces the
281  * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
282  */
283
284 #ifdef SLOW_SHIFT_32
285 #define MIN_GET_BITS  15        /* minimum allowable value */
286 #else
287 #define MIN_GET_BITS  (BIT_BUF_SIZE-7)
288 #endif
289
290
291 GLOBAL(boolean)
292 jpeg_fill_bit_buffer (bitread_working_state * state,
293                       register bit_buf_type get_buffer, register int bits_left,
294                       int nbits)
295 /* Load up the bit buffer to a depth of at least nbits */
296 {
297   /* Copy heavily used state fields into locals (hopefully registers) */
298   register const JOCTET * next_input_byte = state->next_input_byte;
299   register size_t bytes_in_buffer = state->bytes_in_buffer;
300   j_decompress_ptr cinfo = state->cinfo;
301
302   /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
303   /* (It is assumed that no request will be for more than that many bits.) */
304   /* We fail to do so only if we hit a marker or are forced to suspend. */
305
306   if (cinfo->unread_marker == 0) {      /* cannot advance past a marker */
307     while (bits_left < MIN_GET_BITS) {
308       register int c;
309
310       /* Attempt to read a byte */
311       if (bytes_in_buffer == 0) {
312         if (! (*cinfo->src->fill_input_buffer) (cinfo))
313           return FALSE;
314         next_input_byte = cinfo->src->next_input_byte;
315         bytes_in_buffer = cinfo->src->bytes_in_buffer;
316       }
317       bytes_in_buffer--;
318       c = GETJOCTET(*next_input_byte++);
319
320       /* If it's 0xFF, check and discard stuffed zero byte */
321       if (c == 0xFF) {
322         /* Loop here to discard any padding FF's on terminating marker,
323          * so that we can save a valid unread_marker value.  NOTE: we will
324          * accept multiple FF's followed by a 0 as meaning a single FF data
325          * byte.  This data pattern is not valid according to the standard.
326          */
327         do {
328           if (bytes_in_buffer == 0) {
329             if (! (*cinfo->src->fill_input_buffer) (cinfo))
330               return FALSE;
331             next_input_byte = cinfo->src->next_input_byte;
332             bytes_in_buffer = cinfo->src->bytes_in_buffer;
333           }
334           bytes_in_buffer--;
335           c = GETJOCTET(*next_input_byte++);
336         } while (c == 0xFF);
337
338         if (c == 0) {
339           /* Found FF/00, which represents an FF data byte */
340           c = 0xFF;
341         } else {
342           /* Oops, it's actually a marker indicating end of compressed data.
343            * Save the marker code for later use.
344            * Fine point: it might appear that we should save the marker into
345            * bitread working state, not straight into permanent state.  But
346            * once we have hit a marker, we cannot need to suspend within the
347            * current MCU, because we will read no more bytes from the data
348            * source.  So it is OK to update permanent state right away.
349            */
350           cinfo->unread_marker = c;
351           /* See if we need to insert some fake zero bits. */
352           goto no_more_bytes;
353         }
354       }
355
356       /* OK, load c into get_buffer */
357       get_buffer = (get_buffer << 8) | c;
358       bits_left += 8;
359     } /* end while */
360   } else {
361   no_more_bytes:
362     /* We get here if we've read the marker that terminates the compressed
363      * data segment.  There should be enough bits in the buffer register
364      * to satisfy the request; if so, no problem.
365      */
366     if (nbits > bits_left) {
367       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
368        * the data stream, so that we can produce some kind of image.
369        * We use a nonvolatile flag to ensure that only one warning message
370        * appears per data segment.
371        */
372       if (! cinfo->entropy->insufficient_data) {
373         WARNMS(cinfo, JWRN_HIT_MARKER);
374         cinfo->entropy->insufficient_data = TRUE;
375       }
376       /* Fill the buffer with zero bits */
377       get_buffer <<= MIN_GET_BITS - bits_left;
378       bits_left = MIN_GET_BITS;
379     }
380   }
381
382   /* Unload the local registers */
383   state->next_input_byte = next_input_byte;
384   state->bytes_in_buffer = bytes_in_buffer;
385   state->get_buffer = get_buffer;
386   state->bits_left = bits_left;
387
388   return TRUE;
389 }
390
391
392 /*
393  * Out-of-line code for Huffman code decoding.
394  * See jdhuff.h for info about usage.
395  */
396
397 GLOBAL(int)
398 jpeg_huff_decode (bitread_working_state * state,
399                   register bit_buf_type get_buffer, register int bits_left,
400                   d_derived_tbl * htbl, int min_bits)
401 {
402   register int l = min_bits;
403   register INT32 code;
404
405   /* HUFF_DECODE has determined that the code is at least min_bits */
406   /* bits long, so fetch that many bits in one swoop. */
407
408   CHECK_BIT_BUFFER(*state, l, return -1);
409   code = GET_BITS(l);
410
411   /* Collect the rest of the Huffman code one bit at a time. */
412   /* This is per Figure F.16 in the JPEG spec. */
413
414   while (code > htbl->maxcode[l]) {
415     code <<= 1;
416     CHECK_BIT_BUFFER(*state, 1, return -1);
417     code |= GET_BITS(1);
418     l++;
419   }
420
421   /* Unload the local registers */
422   state->get_buffer = get_buffer;
423   state->bits_left = bits_left;
424
425   /* With garbage input we may reach the sentinel value l = 17. */
426
427   if (l > 16) {
428     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
429     return 0;                   /* fake a zero as the safest result */
430   }
431
432   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
433 }
434
435
436 /*
437  * Figure F.12: extend sign bit.
438  * On some machines, a shift and add will be faster than a table lookup.
439  */
440
441 #ifdef AVOID_TABLES
442
443 #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
444
445 #else
446
447 #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
448
449 static const int extend_test[16] =   /* entry n is 2**(n-1) */
450   { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
451     0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
452
453 static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
454   { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
455     ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
456     ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
457     ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
458
459 #endif /* AVOID_TABLES */
460
461
462 /*
463  * Check for a restart marker & resynchronize decoder.
464  * Returns FALSE if must suspend.
465  */
466
467 LOCAL(boolean)
468 process_restart (j_decompress_ptr cinfo)
469 {
470   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
471   int ci;
472
473   /* Throw away any unused bits remaining in bit buffer; */
474   /* include any full bytes in next_marker's count of discarded bytes */
475   cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
476   entropy->bitstate.bits_left = 0;
477
478   /* Advance past the RSTn marker */
479   if (! (*cinfo->marker->read_restart_marker) (cinfo))
480     return FALSE;
481
482   /* Re-initialize DC predictions to 0 */
483   for (ci = 0; ci < cinfo->comps_in_scan; ci++)
484     entropy->saved.last_dc_val[ci] = 0;
485
486   /* Reset restart counter */
487   entropy->restarts_to_go = cinfo->restart_interval;
488
489   /* Reset out-of-data flag, unless read_restart_marker left us smack up
490    * against a marker.  In that case we will end up treating the next data
491    * segment as empty, and we can avoid producing bogus output pixels by
492    * leaving the flag set.
493    */
494   if (cinfo->unread_marker == 0)
495     entropy->pub.insufficient_data = FALSE;
496
497   return TRUE;
498 }
499
500
501 /*
502  * Decode and return one MCU's worth of Huffman-compressed coefficients.
503  * The coefficients are reordered from zigzag order into natural array order,
504  * but are not dequantized.
505  *
506  * The i'th block of the MCU is stored into the block pointed to by
507  * MCU_data[i].  WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
508  * (Wholesale zeroing is usually a little faster than retail...)
509  *
510  * Returns FALSE if data source requested suspension.  In that case no
511  * changes have been made to permanent state.  (Exception: some output
512  * coefficients may already have been assigned.  This is harmless for
513  * this module, since we'll just re-assign them on the next call.)
514  */
515
516 METHODDEF(boolean)
517 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
518 {
519   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
520   int blkn;
521   BITREAD_STATE_VARS;
522   savable_state state;
523
524   /* Process restart marker if needed; may have to suspend */
525   if (cinfo->restart_interval) {
526     if (entropy->restarts_to_go == 0)
527       if (! process_restart(cinfo))
528         return FALSE;
529   }
530
531   /* If we've run out of data, just leave the MCU set to zeroes.
532    * This way, we return uniform gray for the remainder of the segment.
533    */
534   if (! entropy->pub.insufficient_data) {
535
536     /* Load up working state */
537     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
538     ASSIGN_STATE(state, entropy->saved);
539
540     /* Outer loop handles each block in the MCU */
541
542     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
543       JBLOCKROW block = MCU_data[blkn];
544       d_derived_tbl * dctbl = entropy->dc_cur_tbls[blkn];
545       d_derived_tbl * actbl = entropy->ac_cur_tbls[blkn];
546       register int s, k, r;
547
548       /* Decode a single block's worth of coefficients */
549
550       /* Section F.2.2.1: decode the DC coefficient difference */
551       HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
552       if (s) {
553         CHECK_BIT_BUFFER(br_state, s, return FALSE);
554         r = GET_BITS(s);
555         s = HUFF_EXTEND(r, s);
556       }
557
558       if (entropy->dc_needed[blkn]) {
559         /* Convert DC difference to actual value, update last_dc_val */
560         int ci = cinfo->MCU_membership[blkn];
561         s += state.last_dc_val[ci];
562         state.last_dc_val[ci] = s;
563         /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
564         (*block)[0] = (JCOEF) s;
565       }
566
567       if (entropy->ac_needed[blkn]) {
568
569         /* Section F.2.2.2: decode the AC coefficients */
570         /* Since zeroes are skipped, output area must be cleared beforehand */
571         for (k = 1; k < DCTSIZE2; k++) {
572           HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
573       
574           r = s >> 4;
575           s &= 15;
576       
577           if (s) {
578             k += r;
579             CHECK_BIT_BUFFER(br_state, s, return FALSE);
580             r = GET_BITS(s);
581             s = HUFF_EXTEND(r, s);
582             /* Output coefficient in natural (dezigzagged) order.
583              * Note: the extra entries in jpeg_natural_order[] will save us
584              * if k >= DCTSIZE2, which could happen if the data is corrupted.
585              */
586             (*block)[jpeg_natural_order[k]] = (JCOEF) s;
587           } else {
588             if (r != 15)
589               break;
590             k += 15;
591           }
592         }
593
594       } else {
595
596         /* Section F.2.2.2: decode the AC coefficients */
597         /* In this path we just discard the values */
598         for (k = 1; k < DCTSIZE2; k++) {
599           HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
600       
601           r = s >> 4;
602           s &= 15;
603       
604           if (s) {
605             k += r;
606             CHECK_BIT_BUFFER(br_state, s, return FALSE);
607             DROP_BITS(s);
608           } else {
609             if (r != 15)
610               break;
611             k += 15;
612           }
613         }
614
615       }
616     }
617
618     /* Completed MCU, so update state */
619     BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
620     ASSIGN_STATE(entropy->saved, state);
621   }
622
623   /* Account for restart interval (no-op if not using restarts) */
624   entropy->restarts_to_go--;
625
626   return TRUE;
627 }
628
629
630 /*
631  * Module initialization routine for Huffman entropy decoding.
632  */
633
634 GLOBAL(void)
635 jinit_huff_decoder (j_decompress_ptr cinfo)
636 {
637   huff_entropy_ptr entropy;
638   int i;
639
640   entropy = (huff_entropy_ptr)
641     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
642                                 SIZEOF(huff_entropy_decoder));
643   cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
644   entropy->pub.start_pass = start_pass_huff_decoder;
645   entropy->pub.decode_mcu = decode_mcu;
646
647   /* Mark tables unallocated */
648   for (i = 0; i < NUM_HUFF_TBLS; i++) {
649     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
650   }
651 }