assman was renamed to assfile
[laserbrain_demo] / libs / vorbis / psy.c
1 /********************************************************************
2  *                                                                  *
3  * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
4  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
5  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
7  *                                                                  *
8  * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2010             *
9  * by the Xiph.Org Foundation http://www.xiph.org/                  *
10  *                                                                  *
11  ********************************************************************
12
13  function: psychoacoustics not including preecho
14  last mod: $Id: psy.c 18077 2011-09-02 02:49:00Z giles $
15
16  ********************************************************************/
17
18 #include <stdlib.h>
19 #include <math.h>
20 #include <string.h>
21 #include "vorbis/codec.h"
22 #include "codec_internal.h"
23
24 #include "masking.h"
25 #include "psy.h"
26 #include "os.h"
27 #include "lpc.h"
28 #include "smallft.h"
29 #include "scales.h"
30 #include "misc.h"
31
32 #define NEGINF -9999.f
33 static const double stereo_threshholds[]={0.0, .5, 1.0, 1.5, 2.5, 4.5, 8.5, 16.5, 9e10};
34 static const double stereo_threshholds_limited[]={0.0, .5, 1.0, 1.5, 2.0, 2.5, 4.5, 8.5, 9e10};
35
36 vorbis_look_psy_global *_vp_global_look(vorbis_info *vi){
37   codec_setup_info *ci=vi->codec_setup;
38   vorbis_info_psy_global *gi=&ci->psy_g_param;
39   vorbis_look_psy_global *look=_ogg_calloc(1,sizeof(*look));
40
41   look->channels=vi->channels;
42
43   look->ampmax=-9999.;
44   look->gi=gi;
45   return(look);
46 }
47
48 void _vp_global_free(vorbis_look_psy_global *look){
49   if(look){
50     memset(look,0,sizeof(*look));
51     _ogg_free(look);
52   }
53 }
54
55 void _vi_gpsy_free(vorbis_info_psy_global *i){
56   if(i){
57     memset(i,0,sizeof(*i));
58     _ogg_free(i);
59   }
60 }
61
62 void _vi_psy_free(vorbis_info_psy *i){
63   if(i){
64     memset(i,0,sizeof(*i));
65     _ogg_free(i);
66   }
67 }
68
69 static void min_curve(float *c,
70                        float *c2){
71   int i;
72   for(i=0;i<EHMER_MAX;i++)if(c2[i]<c[i])c[i]=c2[i];
73 }
74 static void max_curve(float *c,
75                        float *c2){
76   int i;
77   for(i=0;i<EHMER_MAX;i++)if(c2[i]>c[i])c[i]=c2[i];
78 }
79
80 static void attenuate_curve(float *c,float att){
81   int i;
82   for(i=0;i<EHMER_MAX;i++)
83     c[i]+=att;
84 }
85
86 static float ***setup_tone_curves(float curveatt_dB[P_BANDS],float binHz,int n,
87                                   float center_boost, float center_decay_rate){
88   int i,j,k,m;
89   float ath[EHMER_MAX];
90   float workc[P_BANDS][P_LEVELS][EHMER_MAX];
91   float athc[P_LEVELS][EHMER_MAX];
92   float *brute_buffer=alloca(n*sizeof(*brute_buffer));
93
94   float ***ret=_ogg_malloc(sizeof(*ret)*P_BANDS);
95
96   memset(workc,0,sizeof(workc));
97
98   for(i=0;i<P_BANDS;i++){
99     /* we add back in the ATH to avoid low level curves falling off to
100        -infinity and unnecessarily cutting off high level curves in the
101        curve limiting (last step). */
102
103     /* A half-band's settings must be valid over the whole band, and
104        it's better to mask too little than too much */
105     int ath_offset=i*4;
106     for(j=0;j<EHMER_MAX;j++){
107       float min=999.;
108       for(k=0;k<4;k++)
109         if(j+k+ath_offset<MAX_ATH){
110           if(min>ATH[j+k+ath_offset])min=ATH[j+k+ath_offset];
111         }else{
112           if(min>ATH[MAX_ATH-1])min=ATH[MAX_ATH-1];
113         }
114       ath[j]=min;
115     }
116
117     /* copy curves into working space, replicate the 50dB curve to 30
118        and 40, replicate the 100dB curve to 110 */
119     for(j=0;j<6;j++)
120       memcpy(workc[i][j+2],tonemasks[i][j],EHMER_MAX*sizeof(*tonemasks[i][j]));
121     memcpy(workc[i][0],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0]));
122     memcpy(workc[i][1],tonemasks[i][0],EHMER_MAX*sizeof(*tonemasks[i][0]));
123
124     /* apply centered curve boost/decay */
125     for(j=0;j<P_LEVELS;j++){
126       for(k=0;k<EHMER_MAX;k++){
127         float adj=center_boost+abs(EHMER_OFFSET-k)*center_decay_rate;
128         if(adj<0. && center_boost>0)adj=0.;
129         if(adj>0. && center_boost<0)adj=0.;
130         workc[i][j][k]+=adj;
131       }
132     }
133
134     /* normalize curves so the driving amplitude is 0dB */
135     /* make temp curves with the ATH overlayed */
136     for(j=0;j<P_LEVELS;j++){
137       attenuate_curve(workc[i][j],curveatt_dB[i]+100.-(j<2?2:j)*10.-P_LEVEL_0);
138       memcpy(athc[j],ath,EHMER_MAX*sizeof(**athc));
139       attenuate_curve(athc[j],+100.-j*10.f-P_LEVEL_0);
140       max_curve(athc[j],workc[i][j]);
141     }
142
143     /* Now limit the louder curves.
144
145        the idea is this: We don't know what the playback attenuation
146        will be; 0dB SL moves every time the user twiddles the volume
147        knob. So that means we have to use a single 'most pessimal' curve
148        for all masking amplitudes, right?  Wrong.  The *loudest* sound
149        can be in (we assume) a range of ...+100dB] SL.  However, sounds
150        20dB down will be in a range ...+80], 40dB down is from ...+60],
151        etc... */
152
153     for(j=1;j<P_LEVELS;j++){
154       min_curve(athc[j],athc[j-1]);
155       min_curve(workc[i][j],athc[j]);
156     }
157   }
158
159   for(i=0;i<P_BANDS;i++){
160     int hi_curve,lo_curve,bin;
161     ret[i]=_ogg_malloc(sizeof(**ret)*P_LEVELS);
162
163     /* low frequency curves are measured with greater resolution than
164        the MDCT/FFT will actually give us; we want the curve applied
165        to the tone data to be pessimistic and thus apply the minimum
166        masking possible for a given bin.  That means that a single bin
167        could span more than one octave and that the curve will be a
168        composite of multiple octaves.  It also may mean that a single
169        bin may span > an eighth of an octave and that the eighth
170        octave values may also be composited. */
171
172     /* which octave curves will we be compositing? */
173     bin=floor(fromOC(i*.5)/binHz);
174     lo_curve=  ceil(toOC(bin*binHz+1)*2);
175     hi_curve=  floor(toOC((bin+1)*binHz)*2);
176     if(lo_curve>i)lo_curve=i;
177     if(lo_curve<0)lo_curve=0;
178     if(hi_curve>=P_BANDS)hi_curve=P_BANDS-1;
179
180     for(m=0;m<P_LEVELS;m++){
181       ret[i][m]=_ogg_malloc(sizeof(***ret)*(EHMER_MAX+2));
182
183       for(j=0;j<n;j++)brute_buffer[j]=999.;
184
185       /* render the curve into bins, then pull values back into curve.
186          The point is that any inherent subsampling aliasing results in
187          a safe minimum */
188       for(k=lo_curve;k<=hi_curve;k++){
189         int l=0;
190
191         for(j=0;j<EHMER_MAX;j++){
192           int lo_bin= fromOC(j*.125+k*.5-2.0625)/binHz;
193           int hi_bin= fromOC(j*.125+k*.5-1.9375)/binHz+1;
194
195           if(lo_bin<0)lo_bin=0;
196           if(lo_bin>n)lo_bin=n;
197           if(lo_bin<l)l=lo_bin;
198           if(hi_bin<0)hi_bin=0;
199           if(hi_bin>n)hi_bin=n;
200
201           for(;l<hi_bin && l<n;l++)
202             if(brute_buffer[l]>workc[k][m][j])
203               brute_buffer[l]=workc[k][m][j];
204         }
205
206         for(;l<n;l++)
207           if(brute_buffer[l]>workc[k][m][EHMER_MAX-1])
208             brute_buffer[l]=workc[k][m][EHMER_MAX-1];
209
210       }
211
212       /* be equally paranoid about being valid up to next half ocatve */
213       if(i+1<P_BANDS){
214         int l=0;
215         k=i+1;
216         for(j=0;j<EHMER_MAX;j++){
217           int lo_bin= fromOC(j*.125+i*.5-2.0625)/binHz;
218           int hi_bin= fromOC(j*.125+i*.5-1.9375)/binHz+1;
219
220           if(lo_bin<0)lo_bin=0;
221           if(lo_bin>n)lo_bin=n;
222           if(lo_bin<l)l=lo_bin;
223           if(hi_bin<0)hi_bin=0;
224           if(hi_bin>n)hi_bin=n;
225
226           for(;l<hi_bin && l<n;l++)
227             if(brute_buffer[l]>workc[k][m][j])
228               brute_buffer[l]=workc[k][m][j];
229         }
230
231         for(;l<n;l++)
232           if(brute_buffer[l]>workc[k][m][EHMER_MAX-1])
233             brute_buffer[l]=workc[k][m][EHMER_MAX-1];
234
235       }
236
237
238       for(j=0;j<EHMER_MAX;j++){
239         int bin=fromOC(j*.125+i*.5-2.)/binHz;
240         if(bin<0){
241           ret[i][m][j+2]=-999.;
242         }else{
243           if(bin>=n){
244             ret[i][m][j+2]=-999.;
245           }else{
246             ret[i][m][j+2]=brute_buffer[bin];
247           }
248         }
249       }
250
251       /* add fenceposts */
252       for(j=0;j<EHMER_OFFSET;j++)
253         if(ret[i][m][j+2]>-200.f)break;
254       ret[i][m][0]=j;
255
256       for(j=EHMER_MAX-1;j>EHMER_OFFSET+1;j--)
257         if(ret[i][m][j+2]>-200.f)
258           break;
259       ret[i][m][1]=j;
260
261     }
262   }
263
264   return(ret);
265 }
266
267 void _vp_psy_init(vorbis_look_psy *p,vorbis_info_psy *vi,
268                   vorbis_info_psy_global *gi,int n,long rate){
269   long i,j,lo=-99,hi=1;
270   long maxoc;
271   memset(p,0,sizeof(*p));
272
273   p->eighth_octave_lines=gi->eighth_octave_lines;
274   p->shiftoc=rint(log(gi->eighth_octave_lines*8.f)/log(2.f))-1;
275
276   p->firstoc=toOC(.25f*rate*.5/n)*(1<<(p->shiftoc+1))-gi->eighth_octave_lines;
277   maxoc=toOC((n+.25f)*rate*.5/n)*(1<<(p->shiftoc+1))+.5f;
278   p->total_octave_lines=maxoc-p->firstoc+1;
279   p->ath=_ogg_malloc(n*sizeof(*p->ath));
280
281   p->octave=_ogg_malloc(n*sizeof(*p->octave));
282   p->bark=_ogg_malloc(n*sizeof(*p->bark));
283   p->vi=vi;
284   p->n=n;
285   p->rate=rate;
286
287   /* AoTuV HF weighting */
288   p->m_val = 1.;
289   if(rate < 26000) p->m_val = 0;
290   else if(rate < 38000) p->m_val = .94;   /* 32kHz */
291   else if(rate > 46000) p->m_val = 1.275; /* 48kHz */
292
293   /* set up the lookups for a given blocksize and sample rate */
294
295   for(i=0,j=0;i<MAX_ATH-1;i++){
296     int endpos=rint(fromOC((i+1)*.125-2.)*2*n/rate);
297     float base=ATH[i];
298     if(j<endpos){
299       float delta=(ATH[i+1]-base)/(endpos-j);
300       for(;j<endpos && j<n;j++){
301         p->ath[j]=base+100.;
302         base+=delta;
303       }
304     }
305   }
306
307   for(;j<n;j++){
308     p->ath[j]=p->ath[j-1];
309   }
310
311   for(i=0;i<n;i++){
312     float bark=toBARK(rate/(2*n)*i);
313
314     for(;lo+vi->noisewindowlomin<i &&
315           toBARK(rate/(2*n)*lo)<(bark-vi->noisewindowlo);lo++);
316
317     for(;hi<=n && (hi<i+vi->noisewindowhimin ||
318           toBARK(rate/(2*n)*hi)<(bark+vi->noisewindowhi));hi++);
319
320     p->bark[i]=((lo-1)<<16)+(hi-1);
321
322   }
323
324   for(i=0;i<n;i++)
325     p->octave[i]=toOC((i+.25f)*.5*rate/n)*(1<<(p->shiftoc+1))+.5f;
326
327   p->tonecurves=setup_tone_curves(vi->toneatt,rate*.5/n,n,
328                                   vi->tone_centerboost,vi->tone_decay);
329
330   /* set up rolling noise median */
331   p->noiseoffset=_ogg_malloc(P_NOISECURVES*sizeof(*p->noiseoffset));
332   for(i=0;i<P_NOISECURVES;i++)
333     p->noiseoffset[i]=_ogg_malloc(n*sizeof(**p->noiseoffset));
334
335   for(i=0;i<n;i++){
336     float halfoc=toOC((i+.5)*rate/(2.*n))*2.;
337     int inthalfoc;
338     float del;
339
340     if(halfoc<0)halfoc=0;
341     if(halfoc>=P_BANDS-1)halfoc=P_BANDS-1;
342     inthalfoc=(int)halfoc;
343     del=halfoc-inthalfoc;
344
345     for(j=0;j<P_NOISECURVES;j++)
346       p->noiseoffset[j][i]=
347         p->vi->noiseoff[j][inthalfoc]*(1.-del) +
348         p->vi->noiseoff[j][inthalfoc+1]*del;
349
350   }
351 #if 0
352   {
353     static int ls=0;
354     _analysis_output_always("noiseoff0",ls,p->noiseoffset[0],n,1,0,0);
355     _analysis_output_always("noiseoff1",ls,p->noiseoffset[1],n,1,0,0);
356     _analysis_output_always("noiseoff2",ls++,p->noiseoffset[2],n,1,0,0);
357   }
358 #endif
359 }
360
361 void _vp_psy_clear(vorbis_look_psy *p){
362   int i,j;
363   if(p){
364     if(p->ath)_ogg_free(p->ath);
365     if(p->octave)_ogg_free(p->octave);
366     if(p->bark)_ogg_free(p->bark);
367     if(p->tonecurves){
368       for(i=0;i<P_BANDS;i++){
369         for(j=0;j<P_LEVELS;j++){
370           _ogg_free(p->tonecurves[i][j]);
371         }
372         _ogg_free(p->tonecurves[i]);
373       }
374       _ogg_free(p->tonecurves);
375     }
376     if(p->noiseoffset){
377       for(i=0;i<P_NOISECURVES;i++){
378         _ogg_free(p->noiseoffset[i]);
379       }
380       _ogg_free(p->noiseoffset);
381     }
382     memset(p,0,sizeof(*p));
383   }
384 }
385
386 /* octave/(8*eighth_octave_lines) x scale and dB y scale */
387 static void seed_curve(float *seed,
388                        const float **curves,
389                        float amp,
390                        int oc, int n,
391                        int linesper,float dBoffset){
392   int i,post1;
393   int seedptr;
394   const float *posts,*curve;
395
396   int choice=(int)((amp+dBoffset-P_LEVEL_0)*.1f);
397   choice=max(choice,0);
398   choice=min(choice,P_LEVELS-1);
399   posts=curves[choice];
400   curve=posts+2;
401   post1=(int)posts[1];
402   seedptr=oc+(posts[0]-EHMER_OFFSET)*linesper-(linesper>>1);
403
404   for(i=posts[0];i<post1;i++){
405     if(seedptr>0){
406       float lin=amp+curve[i];
407       if(seed[seedptr]<lin)seed[seedptr]=lin;
408     }
409     seedptr+=linesper;
410     if(seedptr>=n)break;
411   }
412 }
413
414 static void seed_loop(vorbis_look_psy *p,
415                       const float ***curves,
416                       const float *f,
417                       const float *flr,
418                       float *seed,
419                       float specmax){
420   vorbis_info_psy *vi=p->vi;
421   long n=p->n,i;
422   float dBoffset=vi->max_curve_dB-specmax;
423
424   /* prime the working vector with peak values */
425
426   for(i=0;i<n;i++){
427     float max=f[i];
428     long oc=p->octave[i];
429     while(i+1<n && p->octave[i+1]==oc){
430       i++;
431       if(f[i]>max)max=f[i];
432     }
433
434     if(max+6.f>flr[i]){
435       oc=oc>>p->shiftoc;
436
437       if(oc>=P_BANDS)oc=P_BANDS-1;
438       if(oc<0)oc=0;
439
440       seed_curve(seed,
441                  curves[oc],
442                  max,
443                  p->octave[i]-p->firstoc,
444                  p->total_octave_lines,
445                  p->eighth_octave_lines,
446                  dBoffset);
447     }
448   }
449 }
450
451 static void seed_chase(float *seeds, int linesper, long n){
452   long  *posstack=alloca(n*sizeof(*posstack));
453   float *ampstack=alloca(n*sizeof(*ampstack));
454   long   stack=0;
455   long   pos=0;
456   long   i;
457
458   for(i=0;i<n;i++){
459     if(stack<2){
460       posstack[stack]=i;
461       ampstack[stack++]=seeds[i];
462     }else{
463       while(1){
464         if(seeds[i]<ampstack[stack-1]){
465           posstack[stack]=i;
466           ampstack[stack++]=seeds[i];
467           break;
468         }else{
469           if(i<posstack[stack-1]+linesper){
470             if(stack>1 && ampstack[stack-1]<=ampstack[stack-2] &&
471                i<posstack[stack-2]+linesper){
472               /* we completely overlap, making stack-1 irrelevant.  pop it */
473               stack--;
474               continue;
475             }
476           }
477           posstack[stack]=i;
478           ampstack[stack++]=seeds[i];
479           break;
480
481         }
482       }
483     }
484   }
485
486   /* the stack now contains only the positions that are relevant. Scan
487      'em straight through */
488
489   for(i=0;i<stack;i++){
490     long endpos;
491     if(i<stack-1 && ampstack[i+1]>ampstack[i]){
492       endpos=posstack[i+1];
493     }else{
494       endpos=posstack[i]+linesper+1; /* +1 is important, else bin 0 is
495                                         discarded in short frames */
496     }
497     if(endpos>n)endpos=n;
498     for(;pos<endpos;pos++)
499       seeds[pos]=ampstack[i];
500   }
501
502   /* there.  Linear time.  I now remember this was on a problem set I
503      had in Grad Skool... I didn't solve it at the time ;-) */
504
505 }
506
507 /* bleaugh, this is more complicated than it needs to be */
508 #include<stdio.h>
509 static void max_seeds(vorbis_look_psy *p,
510                       float *seed,
511                       float *flr){
512   long   n=p->total_octave_lines;
513   int    linesper=p->eighth_octave_lines;
514   long   linpos=0;
515   long   pos;
516
517   seed_chase(seed,linesper,n); /* for masking */
518
519   pos=p->octave[0]-p->firstoc-(linesper>>1);
520
521   while(linpos+1<p->n){
522     float minV=seed[pos];
523     long end=((p->octave[linpos]+p->octave[linpos+1])>>1)-p->firstoc;
524     if(minV>p->vi->tone_abs_limit)minV=p->vi->tone_abs_limit;
525     while(pos+1<=end){
526       pos++;
527       if((seed[pos]>NEGINF && seed[pos]<minV) || minV==NEGINF)
528         minV=seed[pos];
529     }
530
531     end=pos+p->firstoc;
532     for(;linpos<p->n && p->octave[linpos]<=end;linpos++)
533       if(flr[linpos]<minV)flr[linpos]=minV;
534   }
535
536   {
537     float minV=seed[p->total_octave_lines-1];
538     for(;linpos<p->n;linpos++)
539       if(flr[linpos]<minV)flr[linpos]=minV;
540   }
541
542 }
543
544 static void bark_noise_hybridmp(int n,const long *b,
545                                 const float *f,
546                                 float *noise,
547                                 const float offset,
548                                 const int fixed){
549
550   float *N=alloca(n*sizeof(*N));
551   float *X=alloca(n*sizeof(*N));
552   float *XX=alloca(n*sizeof(*N));
553   float *Y=alloca(n*sizeof(*N));
554   float *XY=alloca(n*sizeof(*N));
555
556   float tN, tX, tXX, tY, tXY;
557   int i;
558
559   int lo, hi;
560   float R=0.f;
561   float A=0.f;
562   float B=0.f;
563   float D=1.f;
564   float w, x, y;
565
566   tN = tX = tXX = tY = tXY = 0.f;
567
568   y = f[0] + offset;
569   if (y < 1.f) y = 1.f;
570
571   w = y * y * .5;
572
573   tN += w;
574   tX += w;
575   tY += w * y;
576
577   N[0] = tN;
578   X[0] = tX;
579   XX[0] = tXX;
580   Y[0] = tY;
581   XY[0] = tXY;
582
583   for (i = 1, x = 1.f; i < n; i++, x += 1.f) {
584
585     y = f[i] + offset;
586     if (y < 1.f) y = 1.f;
587
588     w = y * y;
589
590     tN += w;
591     tX += w * x;
592     tXX += w * x * x;
593     tY += w * y;
594     tXY += w * x * y;
595
596     N[i] = tN;
597     X[i] = tX;
598     XX[i] = tXX;
599     Y[i] = tY;
600     XY[i] = tXY;
601   }
602
603   for (i = 0, x = 0.f;; i++, x += 1.f) {
604
605     lo = b[i] >> 16;
606     if( lo>=0 ) break;
607     hi = b[i] & 0xffff;
608
609     tN = N[hi] + N[-lo];
610     tX = X[hi] - X[-lo];
611     tXX = XX[hi] + XX[-lo];
612     tY = Y[hi] + Y[-lo];
613     tXY = XY[hi] - XY[-lo];
614
615     A = tY * tXX - tX * tXY;
616     B = tN * tXY - tX * tY;
617     D = tN * tXX - tX * tX;
618     R = (A + x * B) / D;
619     if (R < 0.f)
620       R = 0.f;
621
622     noise[i] = R - offset;
623   }
624
625   for ( ;; i++, x += 1.f) {
626
627     lo = b[i] >> 16;
628     hi = b[i] & 0xffff;
629     if(hi>=n)break;
630
631     tN = N[hi] - N[lo];
632     tX = X[hi] - X[lo];
633     tXX = XX[hi] - XX[lo];
634     tY = Y[hi] - Y[lo];
635     tXY = XY[hi] - XY[lo];
636
637     A = tY * tXX - tX * tXY;
638     B = tN * tXY - tX * tY;
639     D = tN * tXX - tX * tX;
640     R = (A + x * B) / D;
641     if (R < 0.f) R = 0.f;
642
643     noise[i] = R - offset;
644   }
645   for ( ; i < n; i++, x += 1.f) {
646
647     R = (A + x * B) / D;
648     if (R < 0.f) R = 0.f;
649
650     noise[i] = R - offset;
651   }
652
653   if (fixed <= 0) return;
654
655   for (i = 0, x = 0.f;; i++, x += 1.f) {
656     hi = i + fixed / 2;
657     lo = hi - fixed;
658     if(lo>=0)break;
659
660     tN = N[hi] + N[-lo];
661     tX = X[hi] - X[-lo];
662     tXX = XX[hi] + XX[-lo];
663     tY = Y[hi] + Y[-lo];
664     tXY = XY[hi] - XY[-lo];
665
666
667     A = tY * tXX - tX * tXY;
668     B = tN * tXY - tX * tY;
669     D = tN * tXX - tX * tX;
670     R = (A + x * B) / D;
671
672     if (R - offset < noise[i]) noise[i] = R - offset;
673   }
674   for ( ;; i++, x += 1.f) {
675
676     hi = i + fixed / 2;
677     lo = hi - fixed;
678     if(hi>=n)break;
679
680     tN = N[hi] - N[lo];
681     tX = X[hi] - X[lo];
682     tXX = XX[hi] - XX[lo];
683     tY = Y[hi] - Y[lo];
684     tXY = XY[hi] - XY[lo];
685
686     A = tY * tXX - tX * tXY;
687     B = tN * tXY - tX * tY;
688     D = tN * tXX - tX * tX;
689     R = (A + x * B) / D;
690
691     if (R - offset < noise[i]) noise[i] = R - offset;
692   }
693   for ( ; i < n; i++, x += 1.f) {
694     R = (A + x * B) / D;
695     if (R - offset < noise[i]) noise[i] = R - offset;
696   }
697 }
698
699 void _vp_noisemask(vorbis_look_psy *p,
700                    float *logmdct,
701                    float *logmask){
702
703   int i,n=p->n;
704   float *work=alloca(n*sizeof(*work));
705
706   bark_noise_hybridmp(n,p->bark,logmdct,logmask,
707                       140.,-1);
708
709   for(i=0;i<n;i++)work[i]=logmdct[i]-logmask[i];
710
711   bark_noise_hybridmp(n,p->bark,work,logmask,0.,
712                       p->vi->noisewindowfixed);
713
714   for(i=0;i<n;i++)work[i]=logmdct[i]-work[i];
715
716 #if 0
717   {
718     static int seq=0;
719
720     float work2[n];
721     for(i=0;i<n;i++){
722       work2[i]=logmask[i]+work[i];
723     }
724
725     if(seq&1)
726       _analysis_output("median2R",seq/2,work,n,1,0,0);
727     else
728       _analysis_output("median2L",seq/2,work,n,1,0,0);
729
730     if(seq&1)
731       _analysis_output("envelope2R",seq/2,work2,n,1,0,0);
732     else
733       _analysis_output("envelope2L",seq/2,work2,n,1,0,0);
734     seq++;
735   }
736 #endif
737
738   for(i=0;i<n;i++){
739     int dB=logmask[i]+.5;
740     if(dB>=NOISE_COMPAND_LEVELS)dB=NOISE_COMPAND_LEVELS-1;
741     if(dB<0)dB=0;
742     logmask[i]= work[i]+p->vi->noisecompand[dB];
743   }
744
745 }
746
747 void _vp_tonemask(vorbis_look_psy *p,
748                   float *logfft,
749                   float *logmask,
750                   float global_specmax,
751                   float local_specmax){
752
753   int i,n=p->n;
754
755   float *seed=alloca(sizeof(*seed)*p->total_octave_lines);
756   float att=local_specmax+p->vi->ath_adjatt;
757   for(i=0;i<p->total_octave_lines;i++)seed[i]=NEGINF;
758
759   /* set the ATH (floating below localmax, not global max by a
760      specified att) */
761   if(att<p->vi->ath_maxatt)att=p->vi->ath_maxatt;
762
763   for(i=0;i<n;i++)
764     logmask[i]=p->ath[i]+att;
765
766   /* tone masking */
767   seed_loop(p,(const float ***)p->tonecurves,logfft,logmask,seed,global_specmax);
768   max_seeds(p,seed,logmask);
769
770 }
771
772 void _vp_offset_and_mix(vorbis_look_psy *p,
773                         float *noise,
774                         float *tone,
775                         int offset_select,
776                         float *logmask,
777                         float *mdct,
778                         float *logmdct){
779   int i,n=p->n;
780   float de, coeffi, cx;/* AoTuV */
781   float toneatt=p->vi->tone_masteratt[offset_select];
782
783   cx = p->m_val;
784
785   for(i=0;i<n;i++){
786     float val= noise[i]+p->noiseoffset[offset_select][i];
787     if(val>p->vi->noisemaxsupp)val=p->vi->noisemaxsupp;
788     logmask[i]=max(val,tone[i]+toneatt);
789
790
791     /* AoTuV */
792     /** @ M1 **
793         The following codes improve a noise problem.
794         A fundamental idea uses the value of masking and carries out
795         the relative compensation of the MDCT.
796         However, this code is not perfect and all noise problems cannot be solved.
797         by Aoyumi @ 2004/04/18
798     */
799
800     if(offset_select == 1) {
801       coeffi = -17.2;       /* coeffi is a -17.2dB threshold */
802       val = val - logmdct[i];  /* val == mdct line value relative to floor in dB */
803
804       if(val > coeffi){
805         /* mdct value is > -17.2 dB below floor */
806
807         de = 1.0-((val-coeffi)*0.005*cx);
808         /* pro-rated attenuation:
809            -0.00 dB boost if mdct value is -17.2dB (relative to floor)
810            -0.77 dB boost if mdct value is 0dB (relative to floor)
811            -1.64 dB boost if mdct value is +17.2dB (relative to floor)
812            etc... */
813
814         if(de < 0) de = 0.0001;
815       }else
816         /* mdct value is <= -17.2 dB below floor */
817
818         de = 1.0-((val-coeffi)*0.0003*cx);
819       /* pro-rated attenuation:
820          +0.00 dB atten if mdct value is -17.2dB (relative to floor)
821          +0.45 dB atten if mdct value is -34.4dB (relative to floor)
822          etc... */
823
824       mdct[i] *= de;
825
826     }
827   }
828 }
829
830 float _vp_ampmax_decay(float amp,vorbis_dsp_state *vd){
831   vorbis_info *vi=vd->vi;
832   codec_setup_info *ci=vi->codec_setup;
833   vorbis_info_psy_global *gi=&ci->psy_g_param;
834
835   int n=ci->blocksizes[vd->W]/2;
836   float secs=(float)n/vi->rate;
837
838   amp+=secs*gi->ampmax_att_per_sec;
839   if(amp<-9999)amp=-9999;
840   return(amp);
841 }
842
843 static float FLOOR1_fromdB_LOOKUP[256]={
844   1.0649863e-07F, 1.1341951e-07F, 1.2079015e-07F, 1.2863978e-07F,
845   1.3699951e-07F, 1.4590251e-07F, 1.5538408e-07F, 1.6548181e-07F,
846   1.7623575e-07F, 1.8768855e-07F, 1.9988561e-07F, 2.128753e-07F,
847   2.2670913e-07F, 2.4144197e-07F, 2.5713223e-07F, 2.7384213e-07F,
848   2.9163793e-07F, 3.1059021e-07F, 3.3077411e-07F, 3.5226968e-07F,
849   3.7516214e-07F, 3.9954229e-07F, 4.2550680e-07F, 4.5315863e-07F,
850   4.8260743e-07F, 5.1396998e-07F, 5.4737065e-07F, 5.8294187e-07F,
851   6.2082472e-07F, 6.6116941e-07F, 7.0413592e-07F, 7.4989464e-07F,
852   7.9862701e-07F, 8.5052630e-07F, 9.0579828e-07F, 9.6466216e-07F,
853   1.0273513e-06F, 1.0941144e-06F, 1.1652161e-06F, 1.2409384e-06F,
854   1.3215816e-06F, 1.4074654e-06F, 1.4989305e-06F, 1.5963394e-06F,
855   1.7000785e-06F, 1.8105592e-06F, 1.9282195e-06F, 2.0535261e-06F,
856   2.1869758e-06F, 2.3290978e-06F, 2.4804557e-06F, 2.6416497e-06F,
857   2.8133190e-06F, 2.9961443e-06F, 3.1908506e-06F, 3.3982101e-06F,
858   3.6190449e-06F, 3.8542308e-06F, 4.1047004e-06F, 4.3714470e-06F,
859   4.6555282e-06F, 4.9580707e-06F, 5.2802740e-06F, 5.6234160e-06F,
860   5.9888572e-06F, 6.3780469e-06F, 6.7925283e-06F, 7.2339451e-06F,
861   7.7040476e-06F, 8.2047000e-06F, 8.7378876e-06F, 9.3057248e-06F,
862   9.9104632e-06F, 1.0554501e-05F, 1.1240392e-05F, 1.1970856e-05F,
863   1.2748789e-05F, 1.3577278e-05F, 1.4459606e-05F, 1.5399272e-05F,
864   1.6400004e-05F, 1.7465768e-05F, 1.8600792e-05F, 1.9809576e-05F,
865   2.1096914e-05F, 2.2467911e-05F, 2.3928002e-05F, 2.5482978e-05F,
866   2.7139006e-05F, 2.8902651e-05F, 3.0780908e-05F, 3.2781225e-05F,
867   3.4911534e-05F, 3.7180282e-05F, 3.9596466e-05F, 4.2169667e-05F,
868   4.4910090e-05F, 4.7828601e-05F, 5.0936773e-05F, 5.4246931e-05F,
869   5.7772202e-05F, 6.1526565e-05F, 6.5524908e-05F, 6.9783085e-05F,
870   7.4317983e-05F, 7.9147585e-05F, 8.4291040e-05F, 8.9768747e-05F,
871   9.5602426e-05F, 0.00010181521F, 0.00010843174F, 0.00011547824F,
872   0.00012298267F, 0.00013097477F, 0.00013948625F, 0.00014855085F,
873   0.00015820453F, 0.00016848555F, 0.00017943469F, 0.00019109536F,
874   0.00020351382F, 0.00021673929F, 0.00023082423F, 0.00024582449F,
875   0.00026179955F, 0.00027881276F, 0.00029693158F, 0.00031622787F,
876   0.00033677814F, 0.00035866388F, 0.00038197188F, 0.00040679456F,
877   0.00043323036F, 0.00046138411F, 0.00049136745F, 0.00052329927F,
878   0.00055730621F, 0.00059352311F, 0.00063209358F, 0.00067317058F,
879   0.00071691700F, 0.00076350630F, 0.00081312324F, 0.00086596457F,
880   0.00092223983F, 0.00098217216F, 0.0010459992F, 0.0011139742F,
881   0.0011863665F, 0.0012634633F, 0.0013455702F, 0.0014330129F,
882   0.0015261382F, 0.0016253153F, 0.0017309374F, 0.0018434235F,
883   0.0019632195F, 0.0020908006F, 0.0022266726F, 0.0023713743F,
884   0.0025254795F, 0.0026895994F, 0.0028643847F, 0.0030505286F,
885   0.0032487691F, 0.0034598925F, 0.0036847358F, 0.0039241906F,
886   0.0041792066F, 0.0044507950F, 0.0047400328F, 0.0050480668F,
887   0.0053761186F, 0.0057254891F, 0.0060975636F, 0.0064938176F,
888   0.0069158225F, 0.0073652516F, 0.0078438871F, 0.0083536271F,
889   0.0088964928F, 0.009474637F, 0.010090352F, 0.010746080F,
890   0.011444421F, 0.012188144F, 0.012980198F, 0.013823725F,
891   0.014722068F, 0.015678791F, 0.016697687F, 0.017782797F,
892   0.018938423F, 0.020169149F, 0.021479854F, 0.022875735F,
893   0.024362330F, 0.025945531F, 0.027631618F, 0.029427276F,
894   0.031339626F, 0.033376252F, 0.035545228F, 0.037855157F,
895   0.040315199F, 0.042935108F, 0.045725273F, 0.048696758F,
896   0.051861348F, 0.055231591F, 0.058820850F, 0.062643361F,
897   0.066714279F, 0.071049749F, 0.075666962F, 0.080584227F,
898   0.085821044F, 0.091398179F, 0.097337747F, 0.10366330F,
899   0.11039993F, 0.11757434F, 0.12521498F, 0.13335215F,
900   0.14201813F, 0.15124727F, 0.16107617F, 0.17154380F,
901   0.18269168F, 0.19456402F, 0.20720788F, 0.22067342F,
902   0.23501402F, 0.25028656F, 0.26655159F, 0.28387361F,
903   0.30232132F, 0.32196786F, 0.34289114F, 0.36517414F,
904   0.38890521F, 0.41417847F, 0.44109412F, 0.46975890F,
905   0.50028648F, 0.53279791F, 0.56742212F, 0.60429640F,
906   0.64356699F, 0.68538959F, 0.72993007F, 0.77736504F,
907   0.82788260F, 0.88168307F, 0.9389798F, 1.F,
908 };
909
910 /* this is for per-channel noise normalization */
911 static int apsort(const void *a, const void *b){
912   float f1=**(float**)a;
913   float f2=**(float**)b;
914   return (f1<f2)-(f1>f2);
915 }
916
917 static void flag_lossless(int limit, float prepoint, float postpoint, float *mdct,
918                          float *floor, int *flag, int i, int jn){
919   int j;
920   for(j=0;j<jn;j++){
921     float point = j>=limit-i ? postpoint : prepoint;
922     float r = fabs(mdct[j])/floor[j];
923     if(r<point)
924       flag[j]=0;
925     else
926       flag[j]=1;
927   }
928 }
929
930 /* Overload/Side effect: On input, the *q vector holds either the
931    quantized energy (for elements with the flag set) or the absolute
932    values of the *r vector (for elements with flag unset).  On output,
933    *q holds the quantized energy for all elements */
934 static float noise_normalize(vorbis_look_psy *p, int limit, float *r, float *q, float *f, int *flags, float acc, int i, int n, int *out){
935
936   vorbis_info_psy *vi=p->vi;
937   float **sort = alloca(n*sizeof(*sort));
938   int j,count=0;
939   int start = (vi->normal_p ? vi->normal_start-i : n);
940   if(start>n)start=n;
941
942   /* force classic behavior where only energy in the current band is considered */
943   acc=0.f;
944
945   /* still responsible for populating *out where noise norm not in
946      effect.  There's no need to [re]populate *q in these areas */
947   for(j=0;j<start;j++){
948     if(!flags || !flags[j]){ /* lossless coupling already quantized.
949                                 Don't touch; requantizing based on
950                                 energy would be incorrect. */
951       float ve = q[j]/f[j];
952       if(r[j]<0)
953         out[j] = -rint(sqrt(ve));
954       else
955         out[j] = rint(sqrt(ve));
956     }
957   }
958
959   /* sort magnitudes for noise norm portion of partition */
960   for(;j<n;j++){
961     if(!flags || !flags[j]){ /* can't noise norm elements that have
962                                 already been loslessly coupled; we can
963                                 only account for their energy error */
964       float ve = q[j]/f[j];
965       /* Despite all the new, more capable coupling code, for now we
966          implement noise norm as it has been up to this point. Only
967          consider promotions to unit magnitude from 0.  In addition
968          the only energy error counted is quantizations to zero. */
969       /* also-- the original point code only applied noise norm at > pointlimit */
970       if(ve<.25f && (!flags || j>=limit-i)){
971         acc += ve;
972         sort[count++]=q+j; /* q is fabs(r) for unflagged element */
973       }else{
974         /* For now: no acc adjustment for nonzero quantization.  populate *out and q as this value is final. */
975         if(r[j]<0)
976           out[j] = -rint(sqrt(ve));
977         else
978           out[j] = rint(sqrt(ve));
979         q[j] = out[j]*out[j]*f[j];
980       }
981     }/* else{
982         again, no energy adjustment for error in nonzero quant-- for now
983         }*/
984   }
985
986   if(count){
987     /* noise norm to do */
988     qsort(sort,count,sizeof(*sort),apsort);
989     for(j=0;j<count;j++){
990       int k=sort[j]-q;
991       if(acc>=vi->normal_thresh){
992         out[k]=unitnorm(r[k]);
993         acc-=1.f;
994         q[k]=f[k];
995       }else{
996         out[k]=0;
997         q[k]=0.f;
998       }
999     }
1000   }
1001
1002   return acc;
1003 }
1004
1005 /* Noise normalization, quantization and coupling are not wholly
1006    seperable processes in depth>1 coupling. */
1007 void _vp_couple_quantize_normalize(int blobno,
1008                                    vorbis_info_psy_global *g,
1009                                    vorbis_look_psy *p,
1010                                    vorbis_info_mapping0 *vi,
1011                                    float **mdct,
1012                                    int   **iwork,
1013                                    int    *nonzero,
1014                                    int     sliding_lowpass,
1015                                    int     ch){
1016
1017   int i;
1018   int n = p->n;
1019   int partition=(p->vi->normal_p ? p->vi->normal_partition : 16);
1020   int limit = g->coupling_pointlimit[p->vi->blockflag][blobno];
1021   float prepoint=stereo_threshholds[g->coupling_prepointamp[blobno]];
1022   float postpoint=stereo_threshholds[g->coupling_postpointamp[blobno]];
1023 #if 0
1024   float de=0.1*p->m_val; /* a blend of the AoTuV M2 and M3 code here and below */
1025 #endif
1026
1027   /* mdct is our raw mdct output, floor not removed. */
1028   /* inout passes in the ifloor, passes back quantized result */
1029
1030   /* unquantized energy (negative indicates amplitude has negative sign) */
1031   float **raw = alloca(ch*sizeof(*raw));
1032
1033   /* dual pupose; quantized energy (if flag set), othersize fabs(raw) */
1034   float **quant = alloca(ch*sizeof(*quant));
1035
1036   /* floor energy */
1037   float **floor = alloca(ch*sizeof(*floor));
1038
1039   /* flags indicating raw/quantized status of elements in raw vector */
1040   int   **flag  = alloca(ch*sizeof(*flag));
1041
1042   /* non-zero flag working vector */
1043   int    *nz    = alloca(ch*sizeof(*nz));
1044
1045   /* energy surplus/defecit tracking */
1046   float  *acc   = alloca((ch+vi->coupling_steps)*sizeof(*acc));
1047
1048   /* The threshold of a stereo is changed with the size of n */
1049   if(n > 1000)
1050     postpoint=stereo_threshholds_limited[g->coupling_postpointamp[blobno]];
1051
1052   raw[0]   = alloca(ch*partition*sizeof(**raw));
1053   quant[0] = alloca(ch*partition*sizeof(**quant));
1054   floor[0] = alloca(ch*partition*sizeof(**floor));
1055   flag[0]  = alloca(ch*partition*sizeof(**flag));
1056
1057   for(i=1;i<ch;i++){
1058     raw[i]   = &raw[0][partition*i];
1059     quant[i] = &quant[0][partition*i];
1060     floor[i] = &floor[0][partition*i];
1061     flag[i]  = &flag[0][partition*i];
1062   }
1063   for(i=0;i<ch+vi->coupling_steps;i++)
1064     acc[i]=0.f;
1065
1066   for(i=0;i<n;i+=partition){
1067     int k,j,jn = partition > n-i ? n-i : partition;
1068     int step,track = 0;
1069
1070     memcpy(nz,nonzero,sizeof(*nz)*ch);
1071
1072     /* prefill */
1073     memset(flag[0],0,ch*partition*sizeof(**flag));
1074     for(k=0;k<ch;k++){
1075       int *iout = &iwork[k][i];
1076       if(nz[k]){
1077
1078         for(j=0;j<jn;j++)
1079           floor[k][j] = FLOOR1_fromdB_LOOKUP[iout[j]];
1080
1081         flag_lossless(limit,prepoint,postpoint,&mdct[k][i],floor[k],flag[k],i,jn);
1082
1083         for(j=0;j<jn;j++){
1084           quant[k][j] = raw[k][j] = mdct[k][i+j]*mdct[k][i+j];
1085           if(mdct[k][i+j]<0.f) raw[k][j]*=-1.f;
1086           floor[k][j]*=floor[k][j];
1087         }
1088
1089         acc[track]=noise_normalize(p,limit,raw[k],quant[k],floor[k],NULL,acc[track],i,jn,iout);
1090
1091       }else{
1092         for(j=0;j<jn;j++){
1093           floor[k][j] = 1e-10f;
1094           raw[k][j] = 0.f;
1095           quant[k][j] = 0.f;
1096           flag[k][j] = 0;
1097           iout[j]=0;
1098         }
1099         acc[track]=0.f;
1100       }
1101       track++;
1102     }
1103
1104     /* coupling */
1105     for(step=0;step<vi->coupling_steps;step++){
1106       int Mi = vi->coupling_mag[step];
1107       int Ai = vi->coupling_ang[step];
1108       int *iM = &iwork[Mi][i];
1109       int *iA = &iwork[Ai][i];
1110       float *reM = raw[Mi];
1111       float *reA = raw[Ai];
1112       float *qeM = quant[Mi];
1113       float *qeA = quant[Ai];
1114       float *floorM = floor[Mi];
1115       float *floorA = floor[Ai];
1116       int *fM = flag[Mi];
1117       int *fA = flag[Ai];
1118
1119       if(nz[Mi] || nz[Ai]){
1120         nz[Mi] = nz[Ai] = 1;
1121
1122         for(j=0;j<jn;j++){
1123
1124           if(j<sliding_lowpass-i){
1125             if(fM[j] || fA[j]){
1126               /* lossless coupling */
1127
1128               reM[j] = fabs(reM[j])+fabs(reA[j]);
1129               qeM[j] = qeM[j]+qeA[j];
1130               fM[j]=fA[j]=1;
1131
1132               /* couple iM/iA */
1133               {
1134                 int A = iM[j];
1135                 int B = iA[j];
1136
1137                 if(abs(A)>abs(B)){
1138                   iA[j]=(A>0?A-B:B-A);
1139                 }else{
1140                   iA[j]=(B>0?A-B:B-A);
1141                   iM[j]=B;
1142                 }
1143
1144                 /* collapse two equivalent tuples to one */
1145                 if(iA[j]>=abs(iM[j])*2){
1146                   iA[j]= -iA[j];
1147                   iM[j]= -iM[j];
1148                 }
1149
1150               }
1151
1152             }else{
1153               /* lossy (point) coupling */
1154               if(j<limit-i){
1155                 /* dipole */
1156                 reM[j] += reA[j];
1157                 qeM[j] = fabs(reM[j]);
1158               }else{
1159 #if 0
1160                 /* AoTuV */
1161                 /** @ M2 **
1162                     The boost problem by the combination of noise normalization and point stereo is eased.
1163                     However, this is a temporary patch.
1164                     by Aoyumi @ 2004/04/18
1165                 */
1166                 float derate = (1.0 - de*((float)(j-limit+i) / (float)(n-limit)));
1167                 /* elliptical */
1168                 if(reM[j]+reA[j]<0){
1169                   reM[j] = - (qeM[j] = (fabs(reM[j])+fabs(reA[j]))*derate*derate);
1170                 }else{
1171                   reM[j] =   (qeM[j] = (fabs(reM[j])+fabs(reA[j]))*derate*derate);
1172                 }
1173 #else
1174                 /* elliptical */
1175                 if(reM[j]+reA[j]<0){
1176                   reM[j] = - (qeM[j] = fabs(reM[j])+fabs(reA[j]));
1177                 }else{
1178                   reM[j] =   (qeM[j] = fabs(reM[j])+fabs(reA[j]));
1179                 }
1180 #endif
1181
1182               }
1183               reA[j]=qeA[j]=0.f;
1184               fA[j]=1;
1185               iA[j]=0;
1186             }
1187           }
1188           floorM[j]=floorA[j]=floorM[j]+floorA[j];
1189         }
1190         /* normalize the resulting mag vector */
1191         acc[track]=noise_normalize(p,limit,raw[Mi],quant[Mi],floor[Mi],flag[Mi],acc[track],i,jn,iM);
1192         track++;
1193       }
1194     }
1195   }
1196
1197   for(i=0;i<vi->coupling_steps;i++){
1198     /* make sure coupling a zero and a nonzero channel results in two
1199        nonzero channels. */
1200     if(nonzero[vi->coupling_mag[i]] ||
1201        nonzero[vi->coupling_ang[i]]){
1202       nonzero[vi->coupling_mag[i]]=1;
1203       nonzero[vi->coupling_ang[i]]=1;
1204     }
1205   }
1206 }